
 Foreword

 This is an absolute premium collection of the 24 articles that comprised the Christmas Calendar of 2014,
for and by the Umbraco Community, called “24 Days In Umbraco”.

Once more, we got some amazing contributions to the calendar, in a wide variety of topics. There's simply something
	for everyone, regardless of your current field of interest; so sit down, relax, and dig in!

	To all the authors of this year's calendar: Thank you for the amazing content - you're all rockstars - #h5yr!

— ‘til next year,

	Jan Skovgaard & Chriztian Steinmeier

 The Umbraco Codebase: A Traveller's Guide
— by Andy Butland
"Welcome my friend, glad you could join us! Balthasar's the name, and you've arrived just as my two wise friends and I are preparing for a trip. I expect you are interested to hear about what we expect to see on our travels? Well, we're not sure yet, but no doubt we'll come across many shiny new structures and well-crafted architecture. Probably we'll find some relics of past civilisations too and possibly even a few fossils."

"When are we off to the Holy Lands you ask? Oh no, it's not that trip - we leave for there in a couple of weeks. No, today we're venturing into the Umbraco code base! It might take us a bit of time but we're hoping for an epiphany at the end of it."

[image: Three Wise Men - Umbraco]

I was going to push that analogy further but to be honest it's already rather forced! However, that's the plan for today's page of the Umbraco advent calendar; to take a whistle-stop tour through the Umbraco code base, which will hopefully be useful for anyone considering contributing code to the project, or simply wanting to understand a little more about what goes on under the covers.

Why contribute?

Umbraco has always been an open-source project and - particularly since the move to Github for the code hosting - has had a number of people in addition to the core team contributing everything from minor fixes to sizeable features.

Why are they doing this? Well, some might be doing it to "scratch an itch" and fix something that is troubling them or their clients. Others see it as one way to contribute to the success of the project that we all benefit from in different ways. When it comes to more direct benefits, there's a lot to learn from seeing how a project of this size is architected and managed. And last but not least - we're all geeks here of course - it can be rather fun. For most, I guess it's probably all of the above.

Can I contribute?

There's no doubt that seriously smart people are working with or as part of the HQ on the development of Umbraco and there are some major changes that have been and continue to be made that require long-term planning from a tightly organised team. But that still leaves plenty of scope for others to contribute. The open issue tracker contains many smaller scale feature requests and bug reports that they'd welcome solutions too.

I'd suggest that any competent developer willing to take a bit of time to get stuck into an issue will make valuable progress - whether alone, or in collaboration with others such as at the recent UK Festival hack day.

So the answer is almost certainly yes.

Getting started

The first step is to register or log in to a GitHub account, find the Umbraco page and click to fork the repository. This gives you your own copy to work in and, when ready, submit a pull request back to the core project.

As the name suggests, GitHub supports the Git distributed source control system which you can either use from the command line - there's a only a small sub-set of instructions you generally need to use - or an application with a GUI wrapper such as Git Extensions.

There are excellent guidelines provided by Github and Umbraco themselves as to the process of forking, creating pull requests and keeping your working fork up to date with changes made by others.

Once submitted, your pull request will be reviewed by a member of the core team and either accepted as is or with modifications, or feedback provided.

Cracking open the code

Having forked the repository and cloned a local copy, despite the encouraging words above it can be a little daunting when you first open the solution (found in src\umbraco.sln) in Visual Studio.

There are quite a number of projects - many of which are retained for legacy and backward compatibility reasons rather than undergoing active development. Down the line - perhaps at Umbraco 8 or 9 - many of these will likely be removed. But clearly this has to be done with careful consideration and having given developers using the CMS plenty of time to be aware that methods they are using are obsolete and will be at some point be retired.

The Umbraco development guidelines gives a good summary of the important projects for ongoing development and a discussion in the developer group provides a some further detail on the legacy ones.

Umbraco.Web.UI.Client

Starting at the most client facing end of the application, within the Umbraco.Web.UI.Client project we find the AngularJS based JavaScript application that provides the user interface for the back-office.

Umbraco make use of many of the features available in the AngularJS framework but even if you aren't particularly up to speed on that it's fairly straightforward to see what's going on. Starting from what is rendered on the screen, each component is made up of a view (the template) and a controller (the logic behind the view). So taking the shiniest new example, the Grid editor has a grid.html file associated with a grid.controller.js (found in src\views\propertyeditors\grid\).

If you open up this or any other of the controllers, you'll see it's defined as a function that is called with various parameters. The objects passed via parameters are all used by the controller in various ways, and are provided to it by a means of dependency injection by the AngularJS framework.

These dependencies are of various types. One example is a resource - an encapsulation of a particular object with methods to allow it to be created and saved via HTTP requests. The grid controller for example has a dependency on a media resource defined in media.resource.js (in src\common\resources\).

Other dependencies may be services. These provide encapsulations of logic that are used across many controllers. An example here is the dialog service defined in dialog.service.js (in src\common\services\) which provides common functionality for handling various modal and overlay dialog boxes.

The views themselves will also have reference to another class of component which are directives. These again encapsulate functionally that is shared across multiple UI elements (and are found in src\common\directives\).

Last point to note here is to make sure to check out the Readme.md file found in the root of the project. This explains how to set up the various components needed to run the task runner grunt which will bundle up the JavaScript, process the .less files to .css and copy them to the web application.

Umbraco.Web.UI

This project will be most familiar to Umbraco developers as it's the main web application that actually runs the software. It's where your custom views, master pages or XSLT files are created and also contains the files related to the back-office itself.

Digging into the umbraco folder you'll come across a few things that you might have thought had been left behind - web forms and user controls? Well yes, it's not all shiny AngularJS and MVC yet! Although much of the back-office has been rebuilt to use these technologies - particularly the content, media and member sections - there is still some parts of the software still running using legacy web forms technology.

This is seamless to the end user due to some clever work that allows the re-use of these pages and controls within the AngularJS single page application implementation of the back-office - and effectively allowed Umbraco 7 to be released sooner than it would otherwise had been. No doubt in time though these will be obsoleted and the rest of the back-office rewritten to use the newer and consistent technologies.

Umbraco.Web

The Umbraco.Web project contains all the Umbraco C# class files related to the web application, such as controllers, models and web APIs. You'll also find here the various classes that provide flexibility in the request pipeline. So there's a lot in here in other words, but let's trace one small route through this layer of the solution.

Going back to the AngularJS resources, I mentioned that they are able to retrieve and save details of a particular type using AJAX based HTTP requests. So for example content.resource.js contains a method called getById(), that retrieves a specific content node for a given Id. This translates to a controller method in ContentController (found in the Editors folder).

In turn this makes a request to a method in a service class in the core project, which will look rather familiar to many. It's exactly the same ContentService that's publically available and used when we are working with the database in our own Umbraco applications. This is one reason why the service APIs are so reliable and well thought out - they've been dogfooded in a sense as they are used throughout the Umbraco back-office itself.

Umbraco.Core

The Umbraco.Core project contains some fundamental features of the content management system, in particular those that don't rely on being used in a web application context. The services mentioned previously are defined here, as are the classes involved with persisting data to the database. We can also find code involved in the saving and retrieving of files as well as various common helper classes used throughout the application

Following our example further the ContentService (found in the Services folder) also has a GetById() method which instantiates an instance of the ContentRepository (found in Persistance\Repositories). In turn, the Get() method of the repository is called within the context of a unit of work, passing through the node Id we want to retrieve content for.

Tracing further we get to the actual data access methods themselves, which utilise PetaPoco, a light-weight object relational mapper (ORM) that is used to generate the necessary SQL statements to pull back the required information from the database and instantiate an object of the type we want to return.

Umbraco.Tests

Last but not least, we come to the Umbraco.Tests project. As the name implies, this contains unit and integration tests providing coverage for many of the methods in the Umbraco.Core and Umbraco.Web projects.

The tests utilise NUnit and mostly inherit from common on some base classes that will instantiate the necessary contexts and dependencies that the tests require.

Rounding off our example, we can find tests that check the service and repository methods for retrieving a content instance by its Id, in ContentServiceTests and ContentRepositoryTest respectively.

Summing up

Well, we got there. I hope that was a useful, albeit very top-line, introduction to some of the highways and by-ways of the Umbraco code base. Who knows, maybe it'll even inspire a new year's resolution or two and there'll be even more pull requests coming in 2015!
Debugging AngularJS
— by Filip Bech
After Umbraco 7 shipped with a backend using AngularJS, the Umbraco community has welcomed Angular with somewhat open arms. But many of us started out as Angular rookies. In this blog post I will share some of my learnings on debugging Angular.

I won't cover the non-Angular backoffice setup, but just note that you should set debug="true" in <compilation ... in your web.config in order to disable Umbraco's backend caching of your Angular code. The other thing that's specific to the Umbraco Angular setup is that you should assign the desired output value to $scope.value for umbraco to automatically save the value.

First of all, you need to be able to clear your cache when you need it. I prefer using chrome's devtools and clear my cache with the extension clear-cache. This gives you more control than just turning on the "Disable cache (while DevTools is open)" option from devtools settings (that you open by clicking the little gear-icon).

I also use two different Angular specific browser extensions: ngInspector and Batarang.

ngInspector

ngInspector is very simple and lightweight and sits fixed on top your website showing you the different scopes and their values. Click a value and it will console.log() it for you (see some console tips a little later in this blog post).

[image: Nginspector]

Batarang

Batarang is a really powerful extension that shows you lots of information about your Angular app. It lives inside devtools under "Angular JS" and you need to enable it and reload the page to start using it. Batarang does all that ngInspector does and has a lot more features. It draws a nice dependency graph and shows you some relevant performance information (if you have expensive watchers/bindings etc).

[image: Batarang]

Good old console

But what I find myself using most of the time is the console (open devtools and press escape to have it side-by-side with another open tab or use its own tab). Angular has the possibility of different, and even nested, scopes depending on where in the DOM you are. In the elements pane of devtools you can select a DOM node by clicking it. Then you can reference the DOM node from the console by using $0. Combined with Angular's element methods this is pretty powerful. You can write angular.element($0).scope(); in the console to see the current scope.

[image: Cons]

Sometimes you will encounter issues where Angular doesn't update values in the view. This typically happens when you're using non-Angular async methods (like jquery.ajax(), setTimeout() etc. A great way to see if that's the case is to ask the current scope to update its bindings. You can confirm the solution if the view is updated when you do angular.element($0).scope().$apply().

You should ideally try to avoid this issue altogether by using Angular services whenever possible ($http, $timeout, etc), but when you occasionally can't avoid it the fix above is really helpful.

Chrome has a feature where anything you log to the console can be saved to a temporary global variable, so you can play around with it later. You do that by right clicking the response and choosing "Store as global variable" (you can then reference it by temp1).

[image: Cons2]

This way you can easily take a look at all the handy methods that are already on the scope.

[image: Cons3]

Pretty neat, right? But this also allows you to assign any method (Angular internal or your own) to the $scope and execute it in context and "on demand" from the console like you just did with $apply.

If you want to make sure the object isn't changed in the middle of you playing around (because objects in javascript are referenced and not copied) you can wrap your call in an angular.copy(...) call. This will of course break some of the methods, as you no longer reference the real scope object. This is especially useful when you are debugging a changing scope, because the logged version might update with the reference (this very chrome specific and has to do with the size of the object).

Another console tip is its .table() method. This is especially useful when you want to review a list (array) of similar items (objects), like recent news-articles, images in a gallery or something similar. If you for instance do console.table(galleryItems); you get a clear and readable table view.

[image: Table]

Angular source

A really good place to look for inspiration or best practices is of course the Angular code. An important thing to note here, is that there are differences in the source code if you use the minified production or not. In production mode error messages are very cryptic and often only contains a link to the Angular website. This isn't very helpful if you are offline. The non-minified development version has the full error-message and the source-code is full of great comments that contain the documentation for all the core features. So make sure to use the dev version when developing and the minified version in production (rather than just minifying the dev-version yourself - to save the error-msg bytes)...

Use the json-filter and the pre-tag

You might find it handy to be able to see the changes of an object on your scope as it develops over time. A great way to do this is by using the standard html pre-tag (for pre-formatted content) and the json-filter in Angular. Lets say you have a deep myObject. You can do <pre> {{myObject | json}} </pre> to show it and the binding magic of Angular will keep that up to date as you interact with the object.

[image: Json]

A couple of Angular tips

This is not really debugging, but rather tips that will make you happier when debugging different issues.

Use controllerAs

A very common problem when you have nested scopes has to do with inheritance. Lets say you have a scope with a title-property and a child-scope that also has a title-property. Because of the way inheritance works you can't access the parent title from your child view (I know you can do $parent.title, but thats just wrong and ugly). What the controllerAs syntax will let you do is assign each controller to a given name, so you can access their values that way. This needs some code for clarification (however this requires Angular v. 1.2+, which is newer than the Angular in the current umbraco backend, but Per promised me this will change soon).

Old way

Both myListCtrl and myItemCtrl injects $scope and sets $scope.title='different values here';

<div ng-controller="myListCtrl">
	<h1>{{title}}</h1>
	<div ng-controller="myItemCtrl"> I cant access the title-property on myListCtrl because myItemCtrl also has a property with this name </div>
</div>

New way

Now the controllers don't use the $scope to pass along values to the view, but instead use the controller instance. So values are saves like this.title='different values here';

Note that this is the new best practice and the direction Angular is going in the future (Angular 2.0 won't use $scope anymore).

<div ng-controller="myListCtrl as myList">
	<h1>{{myList.title}}</h1>
	<div ng-controller="myItemCtrl as myItem">Now I can access both {{myList.title}} and {{myItem.title}} and its much clearer which I want</div>
</div>

Use $destroy and .one()

Another problem you will run into when building larger Angular applications has to do with performance. When you have Angular directives and a view that changes a lot you can easily run into memory leak situations. Because of the way the garbage collector works in browsers (and because of the javascript spec) it can't free up memory by removing objects if they still have anything attached to them. Angular will cleanup after itself as best it can, but you should help along. When scopes are destroyed (a directive or view is removed) Angular will automatically remove all listeners to that scope. But if you have assigned any other listeners (like click handlers etc.) it won't know to clean this up when its destroyed. However it will broadcast a $destroy event on the scope just before removing it. You can (and should) listen for that event and clean up after yourself. If all you have is an event listener that will trigger the removal of the scope, why not just make this a one-time listener (by using .one() instead of .on())? Again lets look at some (admittedly stupid example) code - this time in a link-function of a directive:

link:function(scope,element,attr) {
	var killMe = function() {
		element.remove()
	};
	element.on('click',killMe);
	scope.$on('$destroy', function() {
		element.on('click',killMe);
	})
}

...or with a one-time binding:

link:function(scope,element,attr) {
	element.one('click', function() {
		element.remove()
	});
}

Thats all folks

I hope you learned a thing or two. Maybe you can teach me if I got something wrong. Lets keep learning Angular together! #h5yr
Getting data in and out of complex Archetype data types
— by Maff Rigby
If you haven't already discovered Archetype then you should give yourself an early Christmas present and install it in your current Umbraco project - it's awesome!

What does it do? Well it allows you to build your own custom data types that contain other data types. You can even get really ambitious (like I did) and create Archetype data types that contain other Archetype data types! It's like the movie Inception is actually happening right in front of your eyes, except it's in code version and nobody (hopefully) dies.

The drawback of creating your own Hollywood blockbuster style data types is that once you've created your data type and added your data to it, you then have to somehow get the data out and onto your web page! And if you're even more ambitious (like I was) you will have to update that data and save it back to your Archetype data type!

"Surely something that complex isn't possible!" you scream in horror. Well relax - I've done it and I'm still here to tell the tale. Also I'm going to show you in this very article how you too can create and use these complex Archetype data types. This is my Christmas present to you. Something to wow the relatives with over your Christmas turkey, or impress the guests at your New Year's Eve soiree!

First a bit of background - the project I've been working on recently uses a number of opinion polls. These opinion polls typically have a question and two or three possible answers. Here's what one of those opinion polls could possibly look like:

[image: Sample Opinion Poll]

The number of answers for any opinion poll can vary and I didn't want to hard-code these as properties, so I needed a data type where you could dynamically add 3, 4 or 10 answers to an opinion poll without any hassle.

Also the votes for the opinion polls needed to be easily viewable by the client, which meant they had to be accessible through Umbraco. I could have done this by storing the answers to a database, building a custom Admin section where you could see each opinion poll and the associated answers, and adding that into the Umbraco back end, but that sounded like a lot of work and a somewhat over-engineered solution. So I decided to store the opinion poll results in the actual opinion poll questions themselves, and that's why I chose to use Archetype.

First I created the Archetype data type for my Answer, that I called "Opinion Poll Answer" (clever eh?). This consists of an Textstring property called "Answer" which contains a possible answer for the poll, and a Numeric property called "Votes" which is used to record how many users have chosen that specific answer:

[image: Answer Archetype]

I enabled "Multiple Fieldsets" on this data type (in the data type editor if you toggle the Advanced Options you will see the option there) which enables the editor creating a new opinion poll in Umbraco to add as many answers as they like.

Next I created the Archetype data type for my Question, which contained a Textstring property called "Question" to hold the poll question text, and the Opinion Poll Answer data type that I just created:

[image: Question Archetype]

So now I had my data type set up and added as a property into my Opinion Poll document type, I could create exciting looking polls like this one:

[image: Opinion Poll Content Item]

As you can see, the votes for each answer are stored within the actual answers, and there's a "Total Votes" property that I used to work out voting percentages.

Now came the fun part - I had to get the data out of my awesome data type and on to the page! Are you ready for some code?

I do this all in a helper class rather than clogging up my Surface Controller, so first off I retrieve the poll content item:

var poll = new umbraco.NodeFactory.Node(pollId);

Then I deserialize the "answers" property of that content item into an ArchetypeModel object:

var answers =
 JsonConvert.DeserializeObject<ArchetypeModel>(poll.GetProperty("answers").Value);

Finally I loop through the Fieldsets of that ArchetypeModel object and add the "Answer" and "Votes" values to my view model:

foreach (var answer in answers.Fieldsets.Where(x => x != null && x.Properties.Any()))
 {
	var thisAnswer = answer.GetValue("answer");
	var thisVotes = answer.GetValue<double>("votes");

	model.Answers.Add(new OpinionPollAnswer
	{
	 Answer = thisAnswer,
	 PercentageVotes = (Convert.ToInt32(totalVotes) != 0)
	 ? (int)Math.Round((thisVotes / totalVotes) * 100) : 0
	});
 }

So that's not too tricky really, once you know what you need to do to get the data out. Getting the data back in is the tricky part, because first you need to get the data out (i.e. repeat what I just did there), then you need to update the data, and finally you need to put the data back in to your content item!

So once a user chooses an answer to my opinion poll and clicks 'submit', I get the poll content item that I want to update and put it into the "pollToUpdate" variable:

var pollToUpdate = _contentService.GetById(model.PollId);

Then I increment the total votes property by 1:

var totalVotesProperty = pollToUpdate.Properties.FirstOrDefault(x => x.Alias == "totalVotes");

if (totalVotesProperty != null)
{
 var totalVotes = (!string.IsNullOrEmpty(totalVotesProperty.Value.ToString()))
 ? Convert.ToInt32(totalVotesProperty.Value) : 0;

 totalVotes++;

 pollToUpdate.SetValue("totalVotes", totalVotes);
}

Next comes the big finale - I deserialize the "Answer" property of the opinion poll content item into an ArchetypeModel object. I then loop through the ArchetypeModel object's Fieldsets and find the Answer that matches the one that has been submitted.

Then I retrieve the "Votes" property of that answer and increment it by 1 before assigning it back to the "Votes" property.

I then put the data back into the pollToUpdate object by serializing my ArchetypeModel object, and using the "SetValue" method of my content item:

var selectedAnswer = model.SelectedAnswer;

var pollProperties = pollToUpdate.Properties.FirstOrDefault(x => x.Alias == "answers");

if (pollProperties != null)
{
 var answerToUpdate =
 JsonConvert.DeserializeObject<ArchetypeModel>(pollProperties.Value.ToString());

 foreach (var answer in answerToUpdate.Fieldsets)
 {
	if (answer.GetValue("answer") == selectedAnswer)
	{
	var answerVote = answer.GetValue<int>("votes");
	
	answerVote++;

	var answerProperty = answer.Properties.FirstOrDefault(x => x.Alias == "votes");

	if (answerProperty != null)
	 answerProperty.Value = answerVote;
 }
 }

 pollToUpdate.SetValue("answers", JsonConvert.SerializeObject(answerToUpdate));
}

Finally I save my updated content item back to Umbraco using the ContentService's SaveAndPublishWithStatus method:

_contentService.SaveAndPublishWithStatus(pollToUpdate);

So there you go - that's how you get data in and out of complex Archetype Data Types! As with most code things, if you haven't done it before it can take you quite some time to figure out what to do. That's why I've shared this article - to hopefully help somebody somewhere to do the same thing at some point in the future and save themselves a load of hassle trying to figure it out! I hope you found reading this interestina and useful, or failing that I hope that reading it has kept you busy enough to avoid having to peel the sprouts on Christmas Day!
Your first pull request
— by Sebastiaan Janssen
So Andy took all of us on a tour through the Umbraco codebase, but how would you proceed from that to actually sending a pull request to the core? Let me show you. There's a summary at the bottom of this post, so scroll down if you don't like reading all those pesky words.

Pick

For this example I wanted to get a quick win and went to the issue tracker and found all of the issues that were marked as "(very) easy" and found an excellent issue about some confusion around changing your password. I know how to fix that! It's "just" words!

If you're also thinking about helping out, it would be good to scroll through the (very) easy issues and see if there's something you think you can do. Most people who contribute want to see their favourite issue fixed though, which is awesome, feel free to pick any issue you want! The world is your oister etc., etc.

If you do pick an issue that's a new feature or requires quite a large change to the code, it would be good if you discussed your intentions on the dev mailinglist first, just to make sure you're not wasting your precious time on things that the Umbraco core team wants to fix in a completely different way than you're thinking of right now. Most of the time a little message goes a long way and people will chip in with fantastic ideas that you might not even have thought about in the first place. Free inspiration, what more could you wish for?!

Fork

Once you've decided on an issue you want to tackle, the first thing you'll want to do is fork the Umbraco core on GitHub.

Hitting the Fork button will create a copy of all of the Umbraco source code into your GitHub account. As an added bonus: If Umbraco ever disappears, you now have a copy of all of the code so you don't have to fear you'll ever lose any of that CMS goodness.

Branch

Tip: After forking, create a new branch with the issue number you're fixing.

[image: 2014-12-03_081336]

Clone

[image: 2014-12-02_210734]Now you can clone the source to your local machine, GitHub makes this easy for you and you can click the appropriate buttons here, there's options for whatever you like doing.

Bonus tip: if you're fixing something simple like a spelling mistake then you can just dig into the file structure online, find the file you want to edit and click the pencil icon to edit directly from your browser, no cloning required.

Let's assume you've chosen to clone the repository to your local machine. You can now switch to the branch you created so that all of the work on this issue is done in its own branch. When you at a later point want to work on a different issue you can make another branch for that and isolate the work on that issue in the separate branch.

[image: 2014-12-03_082128]

Build

The first time you do this, you should try to build the code. The very easiest way to make sure you have all the required dependencies set up is to go into the build folder and run build.bat.

This batch file is quite amazing: It will set up all of the stuff you'll need to build Umbraco, from node.js to grunt to bower. It will even ask you to do an install of git, if you happen to not have it on your machine already.

The build should finish without errors after that and if it does, you can be certain that then you can also perform a build successfully in Visual Studio, should you need to alter code. So: run build.bat and the VS build will certainly succeed after that.

Fix

We're almost there now. Your build is succeeding and you can confidently start making changes, verify the build still succeeds and start committing code to your fork!

So in this case, you might want to change the text displayed on the "change password" dashboard. You happen to know the text is in:

src\Umbraco.Web.UI.Client\src\views\dashboard\ChangePassword.html

You can make your changes there and commit them to your fork using your favorite Git client.

[image: 2014-12-02_212415]

Pull request

After committing and pushing the change you can then go back to your fork on GitHub and you should see the ability to create a pull request for the fix you just made.

[image: 2014-12-02_213738]

After clicking the shiny green button you see the changes you made and you can hit the green button again to tell the core team what you did and why. Make sure to refer to an issue on the issue tracker so that the issue can eventually be marked as fixed.

[image: 2014-12-02_214002]

Converse

It is then up to the Umbraco core team to evaluate your fix. They might encourage you to change some things before the pull request can be accepted into the core of Umbraco, so make sure to follow the guidelines as detailed on the contribution pages.

Not to worry though, this is the best phase! Opening a pull request is starting a conversation about the thing that you would love to be fixed and the core team loves to engage in these conversations.

If all is well then your pull request will be accepted and your commit will forever be part of the Umbraco core code. So when I accepted Jan's pull request, this is what happened:

[image: 1yeq8]

And having a pull request accepted feels a little bit like this, each time! Some contributors get very addicted after this happens for the first time, so be warned.. ;)

Summary

	Find an itch to scratch (an issue you want fixed)

	Fork the Umbraco repository on GitHub

	Run build.bat to make sure all the dependencies you need are there

	Implement your changes

	Commit your changes and push them back to your fork on GitHub

	Create a pull request on GitHub by clicking the shiny green button

	Pray (or if you're not religious just have a bit of patience until the core team can evaluate your changes)

	Optionally: win the Pull Request of the year award at next year's CodeGarden like Andy Butland below!

[image: 2014-12-02_215155]
Dealing With Members Using The MemberService & MembershipHelper
— by Lee Messenger
I'm an Umbraco fan, and I've been pretty vocal about that for years. However, since I started developing with it many years ago. My biggest annoyance was dealing with Members and how inefficient it was querying members that had lots of properties.

Lucky for us as part of the continuing Umbraco development cycle, the introduction of a number of new Services was added and one of these new services is the MemberService. Take this and throw in the MembershipHelper and we can now create large scale member driven sites, without having to worry as much about performance.

MemberService

You can use the MemberService for all CRUD (Although for creating new members via a registration form I'd use the MembershipHelper as shown below) but you have to remember it does hit the database for queries.

You can query for multiple members or just for a single member and it returns an IMember from the queries unlike the MembershipHelper below.

There does seem to be some caching for the queries, and you have a few helpful built in methods such as GetMembersByPropertyValue() which also has a number of overloads to deal with dates and match type (Exact, starts with etc.).

In Dialogue we use this service to query for multiple members, and also for updating and deleting members.

To access the MemberService you do it like so

ApplicationContext.Current.Services.MemberService

Some examples of use below that are taken from Dialogue, they should give you an idea of how you could use the service within your own application.

Query for members via a property value (Date Comparison)

var date = DateTime.UtcNow.AddMinutes(-AppConstants.TimeSpanInMinutesToShowMembers);
var members = ApplicationContext.Current.Services.MemberService.GetMembersByPropertyValue(AppConstants.PropMemberLastActiveDate, date, ValuePropertyMatchType.GreaterThan)
 .Where(x => x.IsApproved && !x.IsLockedOut);

Query for members via a property value (String - Starts with)

var members = ApplicationContext.Current.Services.MemberService.GetMembersByPropertyValue("PropMemberSlug", "some-string"), StringPropertyMatchType.StartsWith);

Query for members via a property value (String - Exact Match)

var members = ApplicationContext.Current.Services.MemberService.GetMembersByPropertyValue("PropMemberSlug", "some-string")

Update a property on the member

var member = ApplicationContext.Current.Services.MemberService.GetById(memberId);
member.Properties["PropMemberWebsite"].Value = "Add Me";
ApplicationContext.Current.Services.MemberService.Save(member);

MembershipHelper

Now I have to admit, this threw me a little when I started to use this. I assumed as it was using the cache that I'd be able to query for multiple members in a really efficient and quick way, but it only allows you to get members in a singular manner (GetByEmail, GetById etc...).

One thing you have to bear in mind is that when you use these methods you get an IPublishedContent back and not an IMember like you do with the MemberService above. You can then use the IPublishedContent to get the member property values just like you would for a normal content node (GetPropertyValue<string>("MyProperty") etc.).

To get the MembershipHelper you can do the following

var memHelper = new MembershipHelper(UmbracoContext.Current);

In Dialogue we use this helper class to get members individually along with their property values (As it's super quick), and also use it to register new members as it allows you to use the 'MembershipCreateStatus' so you can get back the status of the registration without having to write much of your own logic.

public enum MembershipCreateStatus
{
 Success,
 InvalidUserName,
 InvalidPassword,
 InvalidQuestion,
 InvalidAnswer,
 InvalidEmail,
 DuplicateUserName,
 DuplicateEmail,
 UserRejected,
 InvalidProviderUserKey,
 DuplicateProviderUserKey,
 ProviderError,
}

Registering a new Member

Below is the code on how we use the MembershipHelper to register a new member. We firstly create a RegisterModel and populate it with the data from our registration form. This is a really simple model, containing Username, Password and email (And a few other things which are not important for this example)

var userToSave = memHelper.CreateRegistrationModel("MemberTypeAlias");
userToSave.Username = viewModel.UserName;
userToSave.Name = viewModel.Username;
userToSave.Email = viewModel.Email;
userToSave.Password = viewModel.Password;
userToSave.UsernameIsEmail = false;

Once the RegisterModel is created, we pass in a new MembershipCreateStatus along with the RegisterModel to a method in the MembershipHelper called 'RegisterMember' - this populates the MembershipCreateStatus and returns this with the status of the create.

MembershipCreateStatus createStatus;
memHelper.RegisterMember(userToSave, out createStatus, false);

Now we have this, we can choose how to proceed. We can check if the creation of the new member was successful or not

if (createStatus != MembershipCreateStatus.Success)
{
 // We could display the exact status of the issue
}
else
{
 // All fine - Continue
}

Getting a member and some properties

Below is an example showing the fastest why to get a member and their associated properties.

var member = memHelper.GetById(id);
var id = member.Id;
var username = member.Name;
var isApproved = member.GetPropertyValue("umbracoMemberApproved");
var isLockedOut = member.GetPropertyValue("umbracoMemberLockedOut");

If you would like to see more examples of using both the MemberService or the MembershipHelper then have a look at the Dialogue MemberService on GitHub

https://github.com/leen3o/Dialogue/blob/master/Src/Dialogue.Logic/Services/MemberService.cs

Or just want to learn about Umbraco in general have a look at some of the videos we have on our Aptitude site.
Taking Open Graph to the next level
— by Anders Bjerner
Ever tried sharing a link on social services like Facebook, and the preview generated by Facebook only shows some general description about the site, and a thumbnail that has nothing to do with the article or page you were about to share? Then that site most likely doesn't use Open Graph.

So what is Open Graph?

Originally created by Facebook, the Open Graph protocol is in short terms a set of meta tags that describe a given page: eg. the title of the page, a summary/description or even an image or video that is shown on the page. The meta tags are then used when you share that page on Facebook, LinkedIn or a similar service that uses Open Graph.

If the Open Graph meta tags aren't present, Facebook (and similar services) will just grab a somewhat random text, and most likely just the first image on page as a thumbnail.

Also if the a page is using AngularJS, you might end up seing something like this:

[image: Example1]

Not pretty. Makes my eyes hurt.

Hello World

To get started with some examples, I was recently a part of launching Aabenraa.dk (a Danish municipality). If you look through the <head> section in the source code for a page, you will find the following meta tags (sorry for the Danish):

<meta property="og:title" content="Flytning, bolig og byggeri" />
<meta property="og:site_name" content="aabenraa.dk" />
<meta property="og:url" content="http://www.aabenraa.dk/borger/flytning,-bolig-og-byggeri/" />
<meta property="og:type" content="website" />
<meta property="og:description" content="Velkommen til Aabenraa Kommunes hjemmeside, hvor du kan få hjælp og svar på langt de fleste af dine spørgsmål, samt information om en række af de tilbud, som Aabenraa Kommune kan tilbyde." />
<meta property="og:image" content="http://www.aabenraa.dk/img/5065aa/facebooklogo.jpg?635442032005618720" />

In the example of Aabenraa.dk, the following information is specified in the Open Graph meta tags:

	The title of the page. Usually the same as what you put in the <title> tag.

	The name of the site. Not a must.

	The URL of the site. Sorta like when specifying a canonical link.

	The type of the page. Should be "website" in most cases or simply omitted.

	The description of the page. A page may have a teaser text, and if the teaser text is present, that will be the description. If not present, a standard text describing the site will be added instead.

	One or more images. By default the logo of the municipality will be shown. A standard page may also have a slider, and images from the slider will be added as well (preceding the logo).

Back to the above HTML example, it can be hard to remember the exact syntax between each time one have to setup the tags for a site. I usually end having to look of the syntax in the Open Graph specification.

So rather than writing the HTML manually, I have therefore created a package that takes a more object-oriented approach, and will generate the necessary HTML for you.

Now to the C#

The package takes its starting point in the OpenGraphProperties class, and in this article, that's all you need. In your MVC view, you could do something like (which covers the most basic properties):

// Get the site name and page title
string siteName = Model.Content.AncestorOrSelf(1).Name;
string title = Model.Content.Name + " - " + siteName;

// Set basic Open Graph properties
OpenGraphProperties og = new OpenGraphProperties {
 SiteName = siteName,
 Type = "website",
 Url = Model.Content.UrlWithDomain(),
 Title = title
};

Now to generate the HTML, simply do as below:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>@title</title>
 @og
 </head>
 <body>

 </body>
</html>

This would generate the following HTML:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Some page - Awesome Site</title>
 <meta property="og:title" content="Some page - Awesome Site" />
<meta property="og:site_name" content="Awesome Site" />
<meta property="og:url" content="http://localhost:50957/some-page/" />
<meta property="og:type" content="website" />

 </head>
 <body>

 </body>
</html>

Back to the example from Aabenraa.dk, setting the description (teaser text) would look like:

// Set the description
if (Model.Content.HasValue("teaser")) {
 og.Description = Model.Content.GetPropertyValue<string>("teaser");
} else {
 og.Description = "Some general description about the site.";
}

And the image(s) like the code below (considering that slider is a collection of images):

foreach (var image in slider) {
 og.AddImage(image.Url);
}
og.AddImage(logoUrl);

All together this would result in the following HTML:

<meta property="og:title" content="Bopælsattest - aabenraa.dk" />
<meta property="og:site_name" content="aabenraa.dk" />
<meta property="og:url" content="http://www.aabenraa.dk/borger/flytning,-bolig-og-byggeri/flytning-og-bolig/bopaelsattest/" />
<meta property="og:type" content="website" />
<meta property="og:description" content="Hvis du har brug for at dokumentere, at du har været registreret på din nuværende eller tidligere adresser i en bestemt periode, kan du anmode om en bopælsattest." />
<meta property="og:image" content="http://www.aabenraa.dk/media/534882/bopaelsattest.jpg" />
<meta property="og:image" content="http://www.aabenraa.dk/img/5065aa/facebooklogo.jpg?635442032005618720" />

Sharing that page on Facebook will now look like:

[image: Facebook]

If you head over to the page in question, you will see that the image is now automatically selected when sharing the page on Facebook, and the description is the same as the teaser text (again sorry for the Danish).

Goodbye World

I have released my code as a small package named Skybrud.OpenGraph. You can download it via NuGet or have a look at the code on GitHub. The package isn't specific to Umbraco, so you are free to use it in your custom ASP.NET projects as well.

If you have a look at the repository on GitHub, there will also be some documentation for more advanced use cases.

For debugging purposes, you might also want to have a look at Facebook's Open Graph Object Debugger. Enter the URL of the page you want to test, and Facebook will tell you how it sees the page.

If you have any questions, feel free to ask them in the the comments ;)
404 error pages for multi-site solutions
— by Anders Bjerner
This article will guide you how to setup custom 404 error pages for a multi-site solution by implementing the IContentFinder interface.

IContentFinder is part of the Umbraco request pipeline, and Umbraco itself has a number for different content finders - eg. one for looking up content from a nice URL and another one if only the ID is specified in the URL. When you enter a URL for your Umbraco website, Umbraco will go through these content finders one by one, and if a content finder knows how to handle a URL, Umbraco will stop with that content finder. The last content finder (named ContentFinderByNotFoundHandlers) is the one responsible for the default and ugly not found page. To summarize this, Umbraco has the following content finders by default:

	Umbraco.Web.Routing.ContentFinderByPageIdQuery

	Umbraco.Web.Routing.ContentFinderByNiceUrl

	Umbraco.Web.Routing.ContentFinderByIdPath

	Umbraco.Web.Routing.ContentFinderByNotFoundHandlers

Plan of action

I have created a demo solution using the new Umbraco 7.2, but the code should work the same from at least 6.1.x and up. You can try and download the solution from GitHub or simply view the individual files via your browser. The login for the backoffice is demo for the both the username and password.

The demo solution has three types of sites; each having their own way to handle 404 error pages.

The solution has a single main site, so for this, I have just hardcoded the error page to a specific ID. If looking at this way alone, it would be somewhat similar to configuring error pages via umbracoSettings.config. Besides the error page being served as the error page, it is just a normal page (alias MainPage). The site is configured with the domain awesome.localhost.bjerner.dk.

The solution also has a type for an institution site (or sub site if you will). For this type of site, the error page is manually selected via a content picker in the settings for the site in the backoffice. We then extract the specified value in our content finder. In similar way, the 404 error page is a standard page of the type InstitutionPage. The site is configured with the domain institution.localhost.bjerner.dk.

Finally there is also a site type for campaigns. For a campaign site, you should manually create an error page of the type CampaignNotFound directly under the root node of the site. If there are multiple error pages for a given site, the first one is selected. For my example campaign site, the domain is campaign.localhost.bjerner.dk.

All three domains are configured to point to 127.0.0.1, so feel free to add them on your local IIS to play around with the demo solution.

Creating a content finder

At first, let us create the basics for a content finder, and then come back to the logic later.

using System.Linq;
using System.Web;
using Umbraco.Core.Models;
using Umbraco.Web;
using Umbraco.Web.Routing;
using umbraco.cms.businesslogic.web;

namespace FourOhFour.Routing {

 public class FourOhFourContentFinder : IContentFinder {

 public bool TryFindContent(PublishedContentRequest contentRequest) {

 // Return whether an error page was found
 return contentRequest.PublishedContent != null;

 }

 }

}

The IContentFinder interface only describes a single method - that is TryFindContent. The method should return a boolean - true if the content finder could handle the request, otherwise false.

Our content finder will not do anything by itself - we have to tell Umbraco about it. Simply adding our content finder to the end of the list of content finders won't do much since ContentFinderByNotFoundHandlers is the one responsible for showing the standard 404 page, and Umbraco will therefore never reach our custom content finder. So we have to add it right before ContentFinderByNotFoundHandlers. This is done in the following way:

using FourOhFour.Routing;
using Umbraco.Core;
using Umbraco.Web.Routing;

namespace FourOhFour {

 public class Startup : ApplicationEventHandler {

 protected override void ApplicationStarting(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext) {

 // Add our custom content finder
 ContentFinderResolver.Current.InsertTypeBefore<ContentFinderByNotFoundHandlers, FourOhFourContentFinder>();

 }

 }

}

We hook into the Umbraco starting event, and insert our own content finder FourOhFourContentFinder right before ContentFinderByNotFoundHandlers, but still after the first three content finders.

Back to the logic in our content finder, the first thing to do is to check what type of site we're dealing with. We can find the site by looking up the domain (so a domain must be configured for the site). We can do that with the following lines (including some error handling):

// Get the current domain name
string domainName = HttpContext.Current.Request.ServerVariables["SERVER_NAME"];

// Get the root node id of the domain
int rootNodeId = Domain.GetRootFromDomain(domainName);

// Return if a root node couldn't be found
if (rootNodeId <= 0) return false;

// Find the root node from the ID
IPublishedContent root = (rootNodeId > 0 ? UmbracoContext.Current.ContentCache.GetById(rootNodeId) : null);

// Return FALSE if the root node wasn't found (AKA move on to the next content finder)
if (root == null) return false;

At this point, the variable root is now the content node of the site in question. We should now check the document type of the site. For the main site, the document type alias is MainSite. Since we for the main site know, that the error page has the ID of 1059, we can simply get it from the content cache like below:

// Handle error pages for each site type
switch (root.DocumentTypeAlias) {

 case "MainSite": {

 // Get the error page from the hardcoded ID
 contentRequest.PublishedContent = UmbracoContext.Current.ContentCache.GetById(1059);

 break;

 }

}

Even though the error page for an institution site isn't hardcoded, the approach is very similar - now we just have to get the ID of the error page from the site settings first:

// Handle error pages for each site type
switch (root.DocumentTypeAlias) {

 case "InstitutionSite": {

 int errorPageId = root.GetPropertyValue<int>("notFoundPage");

 // Get the error page from the specified ID in the "notFoundPage" property
 contentRequest.PublishedContent = UmbracoContext.Current.ContentCache.GetById(errorPageId);

 break;

 }

}

For a campagin site, we should find a child node with the document type alias CampaignNotFound. The code for that would look like:

// Handle error pages for each site type
switch (root.DocumentTypeAlias) {

 case "CampaignSite": {

 // Find the first child with the "CampaignNotFound" document type
 contentRequest.PublishedContent = root.Children.FirstOrDefault(x => x.DocumentTypeAlias == "CampaignNotFound");

 break;

 }

}

That's it!!! Our content finder can now handle error pages for all three types of sites. The entire FourOhFourContentFinder class will now look like:

using System.Linq;
using System.Web;
using Umbraco.Core.Models;
using Umbraco.Web;
using Umbraco.Web.Routing;
using umbraco.cms.businesslogic.web;

namespace FourOhFour.Routing {

 public class FourOhFourContentFinder : IContentFinder {

 public bool TryFindContent(PublishedContentRequest contentRequest) {

 // Get the current domain name
 string domainName = HttpContext.Current.Request.ServerVariables["SERVER_NAME"];

 // Get the root node id of the domain
 int rootNodeId = Domain.GetRootFromDomain(domainName);

 // Return if a root node couldn't be found
 if (rootNodeId <= 0) return false;

 // Find the root node from the ID
 IPublishedContent root = (rootNodeId > 0 ? UmbracoContext.Current.ContentCache.GetById(rootNodeId) : null);

 // Return FALSE if the root node wasn't found (AKA move on to the next content finder)
 if (root == null) return false;

 // Handle error pages for each site type
 switch (root.DocumentTypeAlias) {

 case "MainSite": {

 // Get the error page from the hardcoded ID
 contentRequest.PublishedContent = UmbracoContext.Current.ContentCache.GetById(1059);

 break;

 }

 case "InstitutionSite": {

 int errorPageId = root.GetPropertyValue<int>("notFoundPage");

 // Get the error page from the specified ID in the "notFoundPage" property
 contentRequest.PublishedContent = UmbracoContext.Current.ContentCache.GetById(errorPageId);

 break;

 }

 case "CampaignSite": {

 // Find the first child with the "CampaignNotFound" document type
 contentRequest.PublishedContent = root.Children.FirstOrDefault(x => x.DocumentTypeAlias == "CampaignNotFound");

 break;

 }

 }

 // Return whether an error page was found
 return contentRequest.PublishedContent != null;

 }

 }

}

Epilogue

Once you get the hang of it, the three ways to handle error pages shown is this article, are quite simple. IContentFinder is very powerful, and can be used for even more advanced use cases - not just 404 error pages - so I can really recommend to look further into it. An example for another use case could be virtual URLs - eg. making content appear in other locations than what they are in the backoffice.

Links

	GitHub Repository for the demo solution

	The FourOhFourContentFinder class

	The Startup class

	IContentFinder in the Our Umbraco documentation

Managing Members in Umbraco
— by Robert Foster
Recently Lee talked about Dealing with Members using the MemberService and MembershipHelper to register members and update their properties. But now that you've got members, now what?

Once upon a time managing even a small set of members in Umbraco was painful - with a long tree breaking up the list by first letter, and only a simple search field, trying to find one record amongst hundreds was almost like trying to find a needle in a haystack. And record retrieval for members was slow.

Then came Umbraco 7 - not much had changed in this area, although the introduction of the List View for content was promising. (The recently released of Umbraco 7.2 takes it a step further and leverages the List View as a Media and Member management tool as well, with Members now grouped according to their Type instead of alphabetically; simplifying things greatly. Go upgrade today!)

Enter the Member List View:

[image: Media List View]

The Member List View package adds a new Dashboard to Members to allow for common member management and filtering functions including full record Export, batch Approval/Suspension, batch Delete, and unlocking locked out members.

In addition, you can edit a member directly from the list without leaving it - click on a member's name and a dialog will display all of the properties for editing.

With a little tweaking, the Member List View can be modified to show custom columns, and filtering on custom fields is also possible.

Configuring the Index

This is probably the single most important step you'll need to take when starting to use the Member List View. As it relies heavily on the Examine Index, this must be done correctly taking into account any additional columns you want to display, filter on or export.

The mandatory list of fields may already be set up for you out of the box, however here they are:

 <IndexSet SetName="InternalMemberIndexSet" IndexPath="~/App_Data/TEMP/ExamineIndexes/InternalMember/">
 <IndexAttributeFields>
 <add Name="id" />
 <add Name="nodeName" EnableSorting="true"/>
 <add Name="updateDate" />
 <add Name="writerName" />
 <add Name="loginName" />
 <add Name="email" EnableSorting="true"/>
 <add Name="nodeTypeAlias" />
 </IndexAttributeFields>
 <IndexUserFields>
 <add Name="umbracoMemberApproved" />
 <add Name="umbracoMemberLockedOut" />
 <add Name="umbracoMemberLastLockoutDate" Type="DATETIME" />
 <add Name="umbracoMemberLastLogin" Type="DATETIME" />
 <add Name="umbracoMemberPasswordRetrievalAnswer" />
 <add Name="umbracoMemberPasswordRetrievalQuestion" />
 <add Name="comments" />
 </IndexUserFields>
 </IndexSet>

In the example above I've also added a list of User field in the IndexUserFields node - these aren't strictly necessary, and you will be able to view members in the Member List View however including these fields will allow for better results.

You can include additional properties that have been configured on the Member Types in the IndexUserFields node to have them show up in the export; or add them to the list of columns; or create a custom filter.

Note: You may have to re-build the index after changing the list of fields in order for the new field to show up.

Customising the View - adding additional columns

With minimal effort you can add your own columns to the Member List View by editing the html view.

All custom properties registerd in the index as described above are returned as a dictionary of properties on each member, and can be accessed using the following template:

result.properties[propertyAlias]

This gives us the ability to easily add additional columns simply by editing the AngularJS html view for the list.

For example, to add a property called Company to the list of columns, edit the memberListView.html file in the backoffice/dashboard folder under the MemberListView plugin directory, adding additional columns in the table template as desired. For example, to add the Company column we will make the following changes:

<!-- Add a new Column Heading in the table header: -->
 <thead>
 <tr>
<!-- .. -->
 <td>
 Company
 </td>
<!-- .. -->

 </tr>
 </thead>

<!-- Then in the Body we're going to add the new column to the list of cells: -->
 <tbody>
 <tr ng-repeat="result in listViewResultSet.items"
 ng-class="{selected:result.selected}">
<!-- .. -->
 <td>
 {{result.properties['company']}}
 </td>
<!-- .. -->

 </tr>
 </tbody>

My property isn't showing up!

Check that the index is up to date. Quite often problems related to unexpected results in the Member List View can be traced to an inconsistent Examine Index and the best way to deal with this is to rebuild the index using the tools in the Developer section.

Final Thoughts

So far we've seen a little of what can be achieved with the Member List View. With a little effort you can also extend the filter dialog to include your own custom properties and format the properties in the exported CSV file.

If you want to dig into the code, the MemberListView project is now available on github here:

https://github.com/robertjf/umbMemberListView

If you have any suggestions for improvement, or would like to contribute some enhancement, feel free to submit a pull request!

If you just want to install the package, it's available here:

http://our.umbraco.org/projects/backoffice-extensions/memberlistview-for-umbraco-7

Enjoy!
Making an Angular-powered frontend with Umbraco
— by René Pjengaard and Filip Bech
Have you ever wanted to make a really cool website with cool transitions instead of those tedious pageloads? Maybe even as cool as the Umbraco 7 backoffice? Here is our recipe. I'm sure there are other ways to do it, but now that you have to learn Angular to extend the backoffice, why not use that?

In this article you will learn how to tweak Umbraco and use AngularJS to present data in the frontend. Maybe now is a good time to learn a little about how Google crawls websites containing data presented with JavaScript: http://googlewebmastercentral.blogspot.dk/2014/05/understanding-web-pages-better.html

Routing

First off we have to tame Umbraco and hand over the routing to Angular. This could be done very simple by creating a new UrlRedirect which always uses the same template. This can be done by adding this rule to the UrlRewriting.config file:

<rewrites>
	<add name="Startview Templating"
	 virtualUrl="^~/(?![0-9]+/)(?!umbraco/)([^\?]*?)$"
	 rewriteUrlParameter="ExcludeFromClientQueryString"
	 destinationUrl="~/$1?altTemplate=StartView"
	 ignoreCase="true" />
</rewrites>	

This Rewrite-rule takes the first request (no matter if it is www.imonaboat.com/ og www.imonaboat.com/products/unicorn/) and renders the "StartView" template, which we will create in a short while.

The rest of the requests (unless you do a browser refresh) will be taken care of by Angular.

The startview template

It may sound a little odd that we use the same template no matter what url we hit, but that's because Angular also takes care of the templating (more on that later). So all we want is to load an (almost) empty template along with AngularJS and some styling.

Since you are reading this I presume you are a cool dude or dudette, so of course you will be using Umbraco 7 + MVC. So go ahead and create a template in your View-folder and call it e.g. "StartView.cshtml". Insert the following markup and save your file.

@inherits UmbracoTemplatePage
@{
 Layout = null;
}<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="UTF-8">
 <base href="/">
 <title></title>
</head>
<body>

 <div class="menu">
 <!-- you should probably assemble this with angular in the real world, for this example this will do -->

 Home
 Page 1

 Nested

 Page 2

 </div>

 <div style="position:relative;">
 <div class="view" ui-view></div>
 </div>

 <script src="scripts/angular-1.3.0.js"></script>
 <script src="scripts/angular-ui-router.js"></script>
 <script src="scripts/angular-sanitize.js"></script>
 <script src="scripts/angular-animate.js"></script>
 <script src="scripts/TweenMax.js"></script>
 <script src="scripts/app.js"></script>
 @Html.Partial("GlobalInfo", new GlobalModel(Model.Content))
</body>
</html>

The StartView is plain simple. In real life we would also handle navigation via the API, but for now we want to keep it simple.

The partial view in the bottom is for rendering out javascript variables that are constants. E.g. addresses and phonenumbers or dictionary items for multilingual sites; it could be anything that is constant for the whole site.

In this example i have made a GlobalModel which the partial renders out as a javascript JSON variable.

@using code
@model code.models.GlobalModel
<script>
 var globalInfo = {
 @for (var i = 0; i < ViewData.ModelMetadata.Properties.Count(); i++)
 {
 var data = ViewData.ModelMetadata.Properties.ToList();

 var output = i == (ViewData.ModelMetadata.Properties.Count() - 1) ? string.Format("'{0}': '{1}'", data[i].PropertyName.FirstCharacterToLower(), Html.Display(data[i].PropertyName)) : string.Format("'{0}': '{1}',", data[i].PropertyName.FirstCharacterToLower(), Html.Display(data[i].PropertyName));

 @Html.Raw(output)
 }
 };
</script>

I use the ModelMetadata to loop through the GlobalModel properties, and render out the propertyname (first char lower, or else my frontender will kill me) and the value of the property.

Now we are all set to start creating the Models and Controllers for Angular to communicate with Umbraco. Are you still awake and alert? Here we go!

The API

What I normally do is create a model per doctype. So to begin with I create a model for the frontend doctype. In a real situation I would create a master model first where I would put all the properties I want on all my models, but for this example we just create this single model to keep it simple:

using System.Collections.Generic;
using code.models.helper;
using Newtonsoft.Json;
using Umbraco.Core.Models;
using Umbraco.Web;

namespace code.models
{
 public class FrontpageModel
 {
 [JsonProperty("id")]
 public int Id { get; set; }

 [JsonProperty("name")]
 public string Name { get; set; }

 [JsonProperty("templateUrl")]
 public string AngularTemplateUrl { get; set; }

 [JsonProperty("contentImages")]
 public IEnumerable<ImageModel> ContentImages { get; set; }

 [JsonProperty("contentBody")]
 public string ContentBody { get; set; }

 [JsonProperty("created")]
 public DateTime Created { get; set; }

 [JsonProperty("updated")]
 public DateTime Updated { get; set; }

 public static FrontpageModel GetFromContent(IPublishedContent a)
 {
 return new FrontpageModel
 {
 Id = a.Id,
 Name = a.Name,
 ContentImages = ImageModel.GetImages(a, "contentImages"),
 ContentBody = a.GetPropertyValue<string>("contentBody"),
 AngularTemplateUrl = "/ng-views/frontpage.html", //could be done from Umbraco
 Created = a.CreateDate,
 Updated = a.UpdateDate
 };
 }
 }
}

Notice two things:

	I am a lazy ass and am not creating a DAL for my datahandling. Instead I created the method GetFromContent right there in the model.

	I'm decorating the properties, so I can give them a JS-look (camelCase) when presenting them in my JSON later.

Now that I have my model I will create my controller so Angular can receive some data from Umbraco.

using System;
using System.Linq;
using System.Net;
using System.Web;
using code.models;
using Skybrud.WebApi.Json;
using Skybrud.WebApi.Json.Meta;
using Umbraco.Core.Logging;
using Umbraco.Web;
using Umbraco.Web.WebApi;

namespace code.controllers
{
 [JsonOnlyConfiguration]
 public class ContentApiController : UmbracoApiController
 {
 private UmbracoHelper _helper = new UmbracoHelper(UmbracoContext.Current);

 public object GetData(string url, string langKey = "da")
 {
 HttpContext.Current.Response.AddHeader("Access-Control-Allow-Origin", "*");

 try
 {
 var urlName = HandleUrlDecoding(url);

 //find node by url og return null
 var content = !string.IsNullOrEmpty(urlName)
 ? UmbracoContext.Current.ContentCache.GetByXPath(string.Format(@"//*[@isDoc and @urlName=""{0}""]", urlName)).FirstOrDefault()
 : null;

 if (content != null)
 {
 if (content.DocumentTypeAlias.ToLower() == "frontpage")
 {
 return
 Request.CreateResponse(JsonMetaResponse.GetSuccessFromObject(content,
 FrontpageModel.GetFromContent));
 }
 else if (content.DocumentTypeAlias.ToLower() == "subpage")
 {
 return
 Request.CreateResponse(JsonMetaResponse.GetSuccessFromObject(content,
 SubpageModel.GetFromContent));
 }

 //we are fucked, throw a 500
 return Request.CreateResponse(JsonMetaResponse.GetError(HttpStatusCode.InternalServerError, "Der skete en fejl på serveren." + content.DocumentTypeAlias));
 }
 else
 {
 //no content found, throw a 404
 return Request.CreateResponse(JsonMetaResponse.GetError(HttpStatusCode.NotFound, "Siden fandtes ikke."));
 }
 }
 catch (Exception ex)
 {
 LogHelper.Info(typeof(ContentApiController), String.Format("Der skete en fejl: {0}", ex.Message));

 //throw 500
 return Request.CreateResponse(JsonMetaResponse.GetError(HttpStatusCode.InternalServerError, "Der skete en fejl på serveren."));
 }

 }

 public string HandleUrlDecoding(string url)
 {
 url = HttpUtility.UrlDecode(url);

 var urlName = url == "/"
 ? "home"
 : url.Split(new[] { '/' }, StringSplitOptions.RemoveEmptyEntries).LastOrDefault();

 if (!string.IsNullOrEmpty(urlName))
 {
 urlName = urlName.Replace(".aspx", "");
 urlName = urlName.ToLower();
 }

 return urlName;
 }
 }
}

We now have our controller. Please notice that I added an "Access-Control-Allow-Origin" in the start of the method. This is not necessary if you don't want to access the method from another domain. I also decorated the class with [JsonOnlyConfiguration]. This attribute decoration came from the Skybrud.WebApi.Json NuGet package i have installed (read further down). This means that even though my controller is a UmbracoApiController, and thereby can return both xml and json, it will only return json. The rest of the method is self-expanatory. It looks up the content by urlname and returns the found data as a JSON-object.

The controller can now be called from Angular by using its route + url-parameter: http://www.imonaboat.com/umbraco/api/contentapi/getdata/?url=/product/enterprise/sitecore/

The controller will try to find the url specified and either return the model in JSON-format or a 404 HttpStatusCode with an error message you define.

All the magic that is used to convert our models to JSON is provided by Anders Bjerners NuGet package Skybrud.WebApi.Json

[image: NuGet Skybrud.WebApi.Json]

That's all folks! Now you are ready to go on with the Angular implementation. So I hand over the rudder to my good friend and colleague Filip Bruun who will navigate you through the seas of Angular. Aye aye captain!

Angular routing

Cheers everybody.

Now that René has set everything up on the server I'll try to walk you through the simplest possible solution I've found to generic routing and templating with Angular (for the sake of simplicity I won't go into handling server errors or 404s)

The Angular team have built a very basic router, which they moved out of the core and into its own module in Angular 1.2. That means we need to declare it as a dependency to use it, but it also means that you are free to use other routers (there is really only alternative at the moment: the ui.Router). I prefer the latter and this example is made for ui.Router, but all the features I use in this example also works with the ngRoute module from the Angular team. (although the syntax is a little different, so I put up a ngRoute version in the github repo too).

Angular routers work by reading the url and then intercepting all internal links so clicks will push url changes without reloading the page (while keeping the addressbar and history up to date). When the location changes the router will figure out what to display from settings in an object. So our task at hand is to set up a route object that will match any url and then do an ajax request with the path to the API that you just built in the previous section.

Now all we need from the html is to include the javascript files, provide a base-tag (so all resources (images, css, etc) are fetched from the right location) and a DOM node with a ui-view attribute (and a DOM node with an ng-app attribute to kick off Angular). We also bind the title-tag to a pageTitle value so it can easily be updated. All of this goes in Renés startview...

The javascript magic then looks like this...

angular.module('app', ['ui.router', 'ngAnimate', 'ngSanitize'])
 .config(['$locationProvider', '$stateProvider', function($locationProvider, $stateProvider) {

 // This removes the # in browsers that support it (so we have real urls)
 $locationProvider.html5Mode(true);

 $stateProvider
 .state('all', {
 /* This matches any url, and exposes the path to $stateParams with the name myPath */
 url:'*myPath',
 resolve: {
 getData: ['$stateParams', '$http', function($stateParams, $http) {
 return $http({
 url: '/umbraco/api/contentApi/getData/',
 params: {
 /* Send the current path in the querystring with the key 'url' to the api */
 url: encodeURIComponent($stateParams.myPath)
 }
 });
 }]
 },
 template: '<div ng-include="ctrl.pageData.templateUrl"></div>',
 controller: ['getData','$rootScope', function(getData,$rootScope) {
 var _this = this;
 /* We assign the api-reponse to the instance of the controller, so it's accessible from the view */
 _this.pageData = getData.data.data;
 $rootScope.pageTitle = getData.data.data.name;
 }],
 controllerAs: 'ctrl'
 });
 }])

If you have played around with Angular this won't look to scary to you. The $stateProvider.state() method takes a name as the first parameter and the config object as the second (this is where ngRoute differs a little from ui.Router).

The url value is some special syntax that basically means match anything and capture it (regex-style) into a variable named path.

Resolve is an object of methods that needs to be resolved before the route will instantiate. If you return anything other than a promise (or false) the router will take that as being resolved. If you return a promise the route won't be initiated before that promise is resolved. We return the $http-call directly as that itself returns a promise. That means the route will run on a successful response to that ajax-call.

The routes are static so we can't change the template based on data we receive. We work around this by having the minimal possible template that then uses the ngInclude directive to render a template depending on a url value (that you can set/change at the response of the server).

All that's left is the controller that takes the data the resolve (with the key "getData") returns, and makes that available to the template. At this time we also update the pageTitle value of the $rootScope so the page title is updated.

Voila, there you have it! Angular now controls the routing and templating on the frontend, and you can still have editors change the content and even the template.

Remember to include ngSanitize to allow angular to bind html content from an ajax-response to your view.

The article could easily end here, but I thought we should give you the basics of actually animating the page transitions as well.

Page transitions

Angular also has a module (also not included in the core but made by the team) for animation; it's called ngAnimate. You include its source and set it as a dependency in your module. This will enable two things for you: It will 1) add some css hooks for you when it's transitioning in and out (see the doc in the previous link), and 2) provide you with some javascript hooks for the same thing. The page transition we use could easily be done with a css transition, but I'll implement it the more empowering alternative way.

The hooks are available as methods on an object that the .animation() method returns. We'll add '.view' as our first parameter (the elements that has the hooks) and as the second a function that returns the hooks for enter and leave-animations. The methods will be called by Angular when it's changing the view, and will be called with the element (or rather, an angular.element/jqLite wrapper that contains the element) and a done function that you'll call when your animation is done. This tells angular that you are done animating, so it can remove the element from the DOM at the right time. For the sake of simplicity I'll use the GreenSock Animation Platform to actually tween the values and handle the callback (for the TweenLite calls i use element[0] to get the native element instead of the angular-wrapped one).

All put together it looks something like this:

.animation('.view', function() {
 return {
 enter: function (element, done) {
 TweenLite.from(element[0], 1, {
 opacity: 0,
 onComplete: done
 });
 },
 leave: function(element, done) {
 TweenLite.set(element[0], {
 position: 'absolute',
 top: 0
 });
 TweenLite.to(element[0], 1, {
 opacity: 0,
 onComplete: done
 });
 }
 }
	});

I hope you can grasp the power in this humble module and start imagining what great opportunities this gives you. Good luck! I hope to see more Angular powered Umbraco one-pages in the future!

A couple of tips that could make your one-page even more awesome:

	
A spinner: You could add a spinner or something to indicate that you are loading the next page. Add it in the resolve getData method and remove it from the controller.

	
Save requests: Cache and inline your client side templates so you won't need to make an extra request for them. We do this with a grunt task named ngTemplates. Tweet at me (@filipbech), and I'll send you some configuration if you would like.

	
Error handling: The router will broadcast an event named "$stateChangeError" when resolves fail (eg. header 404, 500 etc). Listen for that event and act accordingly.

	
You should probably build your navigation based on the api as well.

Samples

You can find a sample-project on GitHub: https://github.com/skybrud/AngularPoweredUmbracoFrontend

You can find a live example-site here: http://24days.skybrud.dk/

Architectural thoughts when using Umbraco in Multi-platform solutions
— by Lars D. Rasmussen
Last year, in January, I was about to start up a new project at work. This project is called 'mademyday', and were to become a sister project to DuGlemmerDetAldrig.dk.

On DGDA.dk, we sell experiences like driving a Lamborghini (I can personally recommend that one, btw!), and mademyday should be somewhere in the same alley, but with smaller gifts. Gifts where it's the thought that matters most. This could be a cup of coffee, a sandwich or brunch. Mademyday should be a "mobile only"-universe, where we were going to create a Web App, allowing us to serve (mostly) all mobile OSs.

Since this was a mobile platform, we had to put responsiveness and performance as our top priorities. At this point, I'd never worked with AngularJS before, and Umbraco had only a few months earlier, released v7, so this was a whole new territory for me.

DuGlemmerDetAldrig.dk was running a dinosaur build of Umbraco (v4.11-something) and uCommerce (v2.6'ish), and was. Lets just say. Not performing (the checkout could take 30+ seconds per page-change; I know this is unusual even for a bad site, but it came down to a bad database structure, a ton of bad code and hacks all around the solution). So it was easy to say, that we had to think of a new way of doing things, that would delivering the amazing speed and responsiveness close to that of native apps, but as a web app. Still, we didn't want to limit ourselves to running only a Web App, since the possibility of actually developing native apps for iOS, Android etc., shouldn't be ruled out. The plan was to launch with the web app, and then build the native apps, once we started to gain traction.

With that in mind, we decided that using AngularJS as our "frontend" was the best solution. We wanted to use the new Umbraco v7, but unfortunately uCommerce v5 didn't support v7 yet, so we had to stick with the older v6. It didn't really matter much anyway, though, and we've since then updated to Umbraco v7 and uCommece v6, yay!

This post will mainly be about some of the thoughts we (I) had during the development of mademyday, and subsequent projects. It won't be a code-heavy post, but mainly from an architectural point of view.

We were two people building mademyday.dk. Myself and a designer/frontender from Novicell/Beneath (Lars Hesselberg). I mainly did the API-backend and most of the AngularJS "backend", while my colleague handled the implementation and frontend.

In the following projects after mademyday, I've been the only developer, and many of the tweaks and optimizations mentioned in this post, aren't implemented on mademyday (yet), but things I've learned along the way.

Enough with the intro; lets get this ship sailing!

Structuring our code

Since we were using AngularJS, all data should be delivered using web services running on the Umbraco site. We also wanted the initial load to be as fast as possible. With that in mind, we decided to decouple our frontend and backend, so the frontend wouldn't have to wait for Umbraco to initialize. This way we could service a static HTML-file which booted up Angular, while having an API sitting somewhere else, only requested when needed. This means, when the user hits https://mademyday.dk, the static HTML-page is served. Angular then communicates with our api on https://api.mademyday.dk using our Angular-services (implemented using ngResource).

The setup

We ended up with a (Visual Studio) solution structure kinda like this:

mademyday.Services

This project contained all of our ServiceStack web services. The amount of actual logic in this project, is kept at a minimum.

mademyday.WebApp

We created this project with the sole purpose, of being able to publish our "compiled" frontend. Since a lot of our AngularJS Web App is contained in JavaScript files, images and a LESS-file, we wanted a project we could 'clean' and publish without publishing a lot of 'garbage'.

On this project, I've set up a "Post Build"-event, which compiles/builds our frontend in accordance to the chosen configuration (Debug, Staging, Release etc.), like so:

CD $(ProjectDir)..\DGDA.Builder
IF "$(ConfigurationName)" == "Release" OR "$(ConfigurationName)" == "Staging" (
	gulp --profile release
	XCOPY "$(ProjectDir)..\DGDA.Builder\obj\release*" "$(ProjectDir)" /Y /S /E /R /D
) ELSE (
	gulp --profile debug
	XCOPY "$(ProjectDir)..\DGDA.Builder\obj\debug*" "$(ProjectDir)" /Y /S /E /R /D
)

mademyday.Builder

This project contains the actual source for our web app. We never actually publish this project, and there's no binaries or anything else in this. The "builder" project contains a Gulp setup which handles 'building' (or 'compiling') our project. The output files are stored in the .WebApp-project. The Web App project can then be published to our dev, staging or live servers.

Because of this setup, the builder-project might as well be an external project, setup in Sublime Text, Notepad++ or any other editor/IDE. During the initial development of mademyday, my colleague actually only used Sublime Text, while I was sitting in Visual Studio. Since I usually hold the role of both front- and backender, I find it easier to keep everything at one place (inside Visual Studio) :-)

A little side-note: My Windows-machine is actually just a Virtual Machine, since I use a Macbook Pro for all my work, I'm running Windows 8 in Parallels. On my VM I have Visual Studio, IIS and a SQL Server running. All IIS-sites accessible from my Chrome-browser on my mac.

mademyday.Api

The API-project is the 'internal' API which the services pull data from. The API contains most of our logic, pulls data from Umbraco, uCommerce, RavenDB and wherever we get our data from :-)

mademyday.Umbraco

Finally, the actual "API Website", which is an empty Umbraco installation, referencing the API, Services and external libs like uCommerce.

The actual mademyday-solution looks somewhat different than this, but after creating 5+ different projects with the same "setup" (angular frontend and umbraco backend), this is the solution setup I've found to be the most efficient.

Structuring our code - the frontend

AngularJS is a very modular framework, so when building both mademyday, DGDA and all of our other (internal) tools, building our 'apps', we used the same modular approach.

The overall folder structure of our *.Builder-project, is something like this:

	*.Builder

	gulp/

	tasks/
 Our tasks-folder contains all Gulp-tasks, separated in one task per file.

	config.js

	index.js

	src/

	app/

	modules/

	directives/

	filters/

	services/

	partials/
 The partials-folder contains partial HTML template files, if any. This could be a header, footer or something else, that's reused in most of the app.

	states/

	app.js
 app.js is the 'main' module, and this file contains the initial module dependencies. You could say, that this is the 'starting point' of our app.

	index.html
 A template-file which contains placeholders for stylesheets, scripts and views. The index-file will be 'compiled' by a Gulp-task into a proper index.html containing the needed scripts and stylesheets. Views will be injected by Angular. In development environments, all separate JS-files will be included for easier debugging, and in staging-/production-environments, only one js-file is included (except CDN-hosted files, of course).

	assets/

	fonts/

	images/

	js/

	less/

	app.less
 The app.less-file is the main stylesheet. All other less- and css-files are included in this file. This makes it easier to maintain, since we do not have "independent" files scattered all over. app.less includes all vendor-specific less-files as well.

	vendor/
 This folder contains all of the bower-specific 'vendor' files, like bootstrap, jQuery, angular etc.

	bower.json

	gulpfile.js

	package.json

So, that's an outline of the basic setup of the frontend app. I've mentioned before, that most of our app is modular, which means that each service, state, directive etc. is a separate module (when it makes sense). That makes it easy to reuse code between projects. I've created multiple directives and filters that are used on both mademyday and DuGlemmerDetAldrig. Being able to just "copy/paste" files around and add the module-dependency where it's needed, ensures a properly decoupled and efficient structure and makes my life a lot easier, since I dont have to recreate the same functionality each time it's needed :-)

In all of our projects, we've used the module 'ui-router'. It replaces the angular native routing module. I wont go into details on how it works, except saying that using ui-router makes your app behave like a finite state machine. Every 'page' is a state, so we can have a "products"-state, a "product"-state, a "content"-state etc.

Every state is, of course, a separate module with it's own dependencies, it's own views and one/more controllers. So if a state requires an Angular-service, a directive or a filter, that is only used in that particular state, I'll "bundle" the required functionality along with the state. Keeping dependant services etc. next to the depending state, keeps the structure clean, and makes it easy to figure out whether the modules fit together, or can be used separately.

One great thing about the modular setup is, I only load the modules needed. For instance, I've built a "cockpit" for our shops (mmd and DGDA). This cockpit consists of an angular project and a class library. The class library is added to both mmd and DGDA, and contains some Web API web services that (for instance) loads settings from both sites. An example:

We have an algorithm we use for sorting our products. This algorithm is the same on both sites, but has a few input parameters (calculation weights). These parameters are stored on the individual sites, in the database, and the web services will provide the Cockpit-app with access to these data.

The cockpit also contains site-specific modules, like 'resend text messages' on mademyday, or 'recreate PDFs' on DGDA. In our cockpit "app.js", we have a lot of shared dependencies. Other than the shared modules, I've created two site-specific modules:

	Cockpit.State.Mademyday

	Cockpit.State.Dgda

Our app.js looks somewhat like this:

var Config = {
	Api: window.location.protocol + "//" + window.location.host.replace("cockpit", "api") + "/Umbraco/CockpitApi/"
};

var modules = [
	'... shared modules ...'
];

if (window.location.host.indexOf("mademyday") > -1) {
	modules.push('Cockpit.State.Mademyday');
}
if (window.location.host.indexOf("duglemmerdetaldrig") > -1 || window.location.host.indexOf("dgda") > -1) {
	modules.push('Cockpit.State.Dgda');
}

angular.module('dgdaCockpit', modules)
...

So, our cockpit uses the same code, but depending whether we access cockpit from the duglemmerdetaldrig.dk or mademyday.dk domain, different modules are loaded.

The mademyday-state-module then looks something like this:

angular.module('Cockpit.State.Mademyday', [
	'ui.router',
	'Cockpit.State.Mademyday.Events',
	'Cockpit.State.Mademyday.Filters',
	'Cockpit.State.Mademyday.BatchSend'
])

.config(function config($stateProvider) {
	$stateProvider
		.state('private.mademyday', {
			abstract: true,
			template: '<ui-view/>'
		})
	;
})
;

Each module is then required to load the required modules itself, so the BatchSend-module will load the required services automatically. And if we're on DGDA, the mademyday main module wont be loaded, which again wont load the mademyday-specific modules.

Being able to load certain modules like this, makes Angular incredibly powerful as a "tooling framework", and the reusability is amazing. The cockpit has a ton of shared states and services, each accessing either DGDA or MMD, depending on the accessed domain. So even though we're using the exact same angular-app, it'll adapt and change depending on the modules loaded, and the navigation will reflect this as well.

Last up, I'll just give you an example of what else you can do, when using a modular setup like this. A thing we're currently working on is "splittesting modules" up against each other. This could be, creating Product List A and Product List B. We can test them against each other by loading module-A ex. 80 % of the time, and module-B 20 % of the time (or 50/50, if that's what we want).

I think that pretty much concludes this section. Next up: our backend!

Structuring our code - the backend

I promise, this wont be as long :-) I just want to quickly tell you about our web service setup. On both DuGlemmerDetAldrig.dk and mademyday.dk, we decided to use the uCommerce-bundled ServiceStack instead of the native Web API.

There's two reasons as to why we chose ServiceStack instead of Web API. The first reason was due to the Routing-features of Web API v1. In ServiceStack, I define a service like this:

namespace DGDA.Api.Services {
	[Route("/products")]
	public class ProductsRequest { }

	[Route("/products/{Slug}"]
	public class ProductRequest {
		public string Slug { get; set; }
	}

	public class ProductService : Service {
		public List<Product> Get(ProductsRequest req) { ... }
		public Product Get(ProductRequest req) { ... }
		public Product Post(Product product) { ... }
	}
}

Nothing special here, and Web API v1 could just as well support this. But, the problem arose when I wanted related services. Imagine that a product has related stores. If we want to get those stores, I'd create a service like this:

namespace DGDA.Api.Services {
	[Route("/stores")]
	public class StoresRequest { }

	[Route("/stores/{Id}"]
	public class StoreRequest {
		public string Slug { get; set; }
	}

	[Route("/products/{Slug}/stores"]
	public class ProductStoresRequest {
		public string Slug { get; set; }
	}

	public class ProductService : Service {
		...
		public List<Store> Get(ProductStoresRequest req) { … }
		...
	}
}

This kind of routing isn't (to my knowledge) possible in Web API v1. However, you can do like this in Web API v2. Unfortunately Umbraco doesn't yet ship with Web API v2, and the hassle of getting Web API v2 working alongside Umbraco, wasn't worth the time, compared to just using ServiceStack.

Another reason we didn't use Web API, was the lack of CORS (Cross-Origin Resource Sharing) support (in short: AJAX-requests across domains). In Web API v2, there's a NuGet package that enables CORS simply by using a class-attribute. I didn't find an easy way to implement this with Web API v1, while enabling CORS in ServiceStack was a simple attribute.

Other than that, I didn't really put that much thought into our backend structure (of course, that's a lie, but it's not nearly as exciting as the frontend imo). So I'll let this be, and quickly jump to the next section.

The Frontend/Backend-connection

When creating the connection between our web app and the web services, we used ngResource, which is an Angular-wrapper on top of the $http-service, when communicating with RESTful services. Using ngResource, I could create a module like this:

angular.module('Dgda.Sevice.Product', ['ngResource', 'Dgda.Service.Config'])
	.factory('Product', ['$resource', 'Config', function ($resource, Config) {
		return $resource(Config.Api + 'products/:slug', { slug: '@Slug' });
	}])
;

In my controllers, I can then access products, using the built-in methods, like so:

var products = Product.query(); // Get all products
var product = Product.Get({Slug: 'my-product'}); // Get a specific product

The great thing about ngResource, is that all non-GET-methods are available on the invidual resource-objects, so I could do like this:

product.SomeProperty = "test";
product.$save();

/** or **/

products[x].SomeProperty = "test";
products[x].$save();

Or I could create a new product:

var product = new Product();
product.Slug = 'new-product';
product.SomeProperty = 'Horse';
product.$save();

(Of course, functionality like this, editing products, isn't available on our public services)

I use ngResource a lot in our cockpit and other internal tools, because the when building the services in a RESTful manner, everything is so easy and fast to implement. Both implementing the Angular- and .NET-services are quite trivial, once you get the hang of it :-)

What about those stores, then? You remember, the product stores? I'd do like this:

angular.module('Dgda.Sevice.Product', ['ngResource', 'Dgda.Service.Config'])
.factory('Product', ['$resource', 'Config', function ($resource, Config) {
	return $resource(Config.Api + 'products/:slug', { slug: '@Slug' }, {
		stores: {
			method: 'GET',
			url: Config.Api + 'products/:slug/stores',
			isArray: true
		});
}]);

The ngResource objects are extendable as well, and you can override any parameters and thereby create "rich" objects, that're easily used everywhere in your project :-)

This pretty much wraps up what I intended to write about, here in the "connecting the dots"-section.

I'll wrap this section by adding that the AngularJS-documentation is quite good, and I'd recommend the tutorial on angularjs.org, if you want to try it out for yourself. To me, learning AngularJS was one of the biggest leaps forward in the web development world, that I've done, in the past few years. Once I actually got the hang of Angular and the whole "web service based"-backends, I really dont want to create apps any other way :-)

Finally: The conclusion

So why did we decide to do like this? And how do we use it now?

Since we released the fist version of our mademyday Web App in March, we now have an iOS app as well. The iOS app was created by one of my colleagues at Novicell in his spare time. Because of the way we built our solution, decoupling everything and relying on nothing but web services, we were able to get the app developed almost without my help. I had already written up all of the services, so the functionality and logic was "in place". All the app had to do, was "show" the data (I'm writing this, as if it was a quick thing to do, which is definitely not the case. Developing the app has taken a lot of hours; just not mine :-)). Sure, I had to assist and explain how the services worked, how the flow was etc., but I think that going from having the web app only, to web app + iOS app, only required very few tweaks to our services.

The original mademyday-project taught us how powerful the combination of AngularJS and uCommece + Umbraco was. The performance we achieved when "breaking" the original flow of both uCommerce and Umbraco was amazing. When I say 'breaking the flow', I mean using both Umbraco and specially uCommerce and only relying on their APIs and some not-so-well-documented features. It wasn't an easy task, and it took a lot of "learning hours". I bet some of those hours could most likely have been saved, if I knew more about Umbraco and uCommerce than what I did, but that's just how it is ;-) It was time well spent, and the result is a very stable (and flexible) backend, with a great performing frontend that provides close to the responsiveness you would expect from a native app.

Since the development of mademyday, we've rebuilt DuGlemmerDetAldrig from scratch using the knowledge about AngularJS and Umbraco + uCommerce. Developing mademyday included a lot of "learning by doing", and it's safe to say that the DGDA-project is miles ahead of MMD. Every new project I build, I find some new and better way of doing something. That's why I love prototyping and building tools for internal use; there's always new things to learn and existing code to optimize :-)

I hope you enjoyed reading this (rather long) post. During the last year'ish, I've learned a ton just "by doing". A lot of things have been done, redone and scrapped. It's been challenging, and most of all: fun.

And I'm sorry for the length of the post though, I really am :-) I actually found it quite hard to get started, not knowing what to write about. But I went with the idea of writing a lot of the thoughts I wish I could have read about, when I started developing mademyday.

I hope that my thoughts on these subjects have been inspiring, educating or at least in any way exciting to read about :-) If you have any questions, want me to explain something further or simply bash my way of doing things, feel free to drop a comment below :-) And please: If you have better ways to do things I've talked about, suggestions or anything else, let me hear it!
How to take full advantage of macros within the Umbraco 7.2 grid
— by Antoine Giraud and John Fisher
With the new Umbraco Grid, macros have been given a new breath of life, no longer condemned to oblivion as they have been since the advent of MVC.

In this post we will see how to take full advantage of these amazing components. The result will be versatile and attractive grids for content editors.

Grid vs Macro

Macros are one of the components that can be included in a grid.

[image: 1]

Their main role is to display contents in the grid with a defined format and behavior. Their parameters are used to specify the different display options, behaviors and data sources.
The main attraction of macros is the capacity to be used in several places on a website and to be parameterized in different ways.

So far, nothing unusual or out of the ordinary from normal use of a macro.

But in some cases, we may need in our Grid some simple and short information with a given behavior but without redundancy.
The kind of content that is only used once, in only one grid and in only one page, for example:

	An image or text slider

	A dynamic list of slogans

	A list of information with some special markup

	...

Sometimes, those cases can be solved using a Rich Text Editor, but then we would be forced to edit complex HTML into the editor, which is not a very versatile solution for the content editor.
We may also create new properties and document types for it, but this has the risk of bloating the structure of document types and make it more complex for the editor.

Another option, much more elegant, would be use to a macro as an editor for this information.
It may sound a bit contradictory, since the essence of the macro is to be re-used, whereas we only want to use the example macro in one place. What we are going to reuse here will be the macro's ability to be parameterized.

How?

Property Editors, another big new feature of Umbraco 7, can be used as parameters types for Umbraco macros in addition to being used as datatypes. This great feature, often forgotten, leads to an endless number of possibilities for our Grid configuration.

All that has to be done is to specify in the Property Editor's manifest file that it will be used as parameters type, with isParameterEditor = true.

{
 propertyEditors: [
 {
 alias: "SimpleSliderEditor",
 name: "Simple Slider Editor",
			isParameterEditor: true,
			hideLabel: true,
			...
 }
 }
]
}

An example is better than a thousand words

To illustrate this, we are going to create a simple slider editor that will be used directly into our grid.

First, we need a fresh Umbraco 7.2 instance with a grid datatype ready to use. We will use the new Fanoe starter kit.

Next, we need a simple Property Editor that will allow us to create a list of slides with the following attributes:

	name

	image

	text

	link

Since Property Editor development is beyond the scope of this post, we have prepared a zip archive for you with all the needed files. The code is also available on GitHub.

Unzip the archive into the root of your test Umbraco site. Once it is copied, restart the website by adding a blank line to the web.config file and saving it. This will allow Umbraco to pick up the new Property editor.

Then, in Umbraco's backoffice, go to the Developer section and right click on Data Types. Click on Create and set the name to Simple Slider Editor. In the Property editor dropdown, select Simple Slider Editor and click on the Save button.

Then, right click on Macros and create a new macro called Simple Slider. For the MVC Partial view, choose ~/Views/MacroPartials/SimpleSlider.cshtml. In the Parameters tab, create one called SliderData of type SimpleSliderEditor. If SimpleSliderEditor does not appear in the list, restart the application again.

[image: 2]

We also need to specify that this macro can be used within Grids. Check Use in rich text editor and the grid and uncheck Render in rich text editor and the grid.

[image: 3]

From the grid settings, we will also need to set as enable the macros into an area. In the tree on the right hand side, expand the Data Types element and select the Grid Frontpage data type. Under the Row configurations section, click on the row preview icon to the left of Banner. In the drawer that appears, click on the top row, shaded in blue in the image below. Check the Macro box and click the Ok button to close the drawer and finally the Save button.

[image: 4]

Go to the Content section and click on the Home node. Click on the + button that appears below Welcome to Fanoe and its tagline. We are now able to insert our new macro within the grid.

[image: 5]

And even better, we can edit our slider directly from here, adding and editing slides.

[image: 6]

The data will be stored as macro parameters with the same format as a property editor data (JSON in this case).

We can then access this data in the macro's MacroPartials view (~/Views/MacroPartials/SimpleSlider.cshtml):

@inherits Umbraco.Web.Macros.PartialViewMacroPage

@{
 dynamic sliderData = (!String.IsNullOrEmpty(Model.MacroParameters["SliderData"].ToString())) ?
 Json.Decode((dynamic)HttpUtility.HtmlDecode(Model.MacroParameters["SliderData"].ToString())) : null;
}

<div class="slider">
	<div class="slider-wrapper">
		@foreach (var slide in sliderData)
		{
			...
		}
	</div>
</div>

Dressing up the macro

Now, let's dress up the macro within the Umbraco backoffice, to give content editors an idea of how the final result will look once published.

While macros can be rendered as preview within rich text editors, they can also be rendered within the grid.

This option can be enabled within the macro's configuration area:

[image: 7]

If this option is not enabled, only the name of the macro will appear in the grid during content editing.

It would be much more attractive for the content editor to have an idea of how the content will look.

The problem is that when rendering macros within a Grid, there is no chance to natively inject styles into the grid and give them a better style.

First alternative

A first approach can be to show a static, generic, image of the macro. This will improve the general look of the grid. Nevertheless, the real content is not showed, which might be confusing for the content editor.

To do that, the PartialView just has to control when we are in the Umbraco backoffice and display the static image of the macro.

@if (Request.Url.AbsolutePath.Contains("GetMacroResultAsHtmlForEditor")) {

}
else
{
 <div class="slider">
		...
 </div>
}

You can uncomment lines 8-12 and 24 in SimpleSlider.cshtml to see an example. Save the changes and reload the backoffice. In our example, this will be the result:

[image: 8]

A better alternative

Until the Umbraco team can give us a native solution to inject styles within the grid, there is an easy and isolated way to do it: creating another very simple Property Editor that allows us to load a stylesheet into the Umbraco backoffice using the angular assetsService.

assetsService.loadCss (....)

This simple GridInjector Property Editor was copied into your App_Plugins directory along with the SimpleSliderEditor.

All you have to do is create a new Datatype, selecting Grid Injector as the Property editor and specifying the path of the CSS you would like to load. An example /css/backend.css file was also copied with the SimpleSliderEditor, which we will use.

[image: 9]

The last step will be to add a new property of this type into the Home DocumentType.

[image: 10]

Finally, comment lines 8-12 and 24 in SimpleSlider.cshtml before visiting the Home node in Content, otherwise the static image will be displayed.

Obviously, with this alternative, we will need to make the additional effort of styling. But we can achieve a useful and attractive result for the content editor.

[image: 11]

Important note

We have to be especially careful because this loaded stylesheet is applied across the whole of Umbraco's backoffice. So it is very important not to use the main stylesheet of your website here and to always add a specific prefix to your styles (e.g. .usky-grid).

Potential Error

When you have a lot of data stored in the macro, the backend macro rendering service may return an error HTTP Error 404.15 - Not Found The request filtering module is configured to deny a request Where the query string is too long. In this case, we just have to change the query string size limit in the web.config

<system.webServer>
	<security>
		<requestFiltering>
			<requestLimits MaxQueryString="5000" />
		</requestFiltering>
	</security>
</system.webServer>

and

<system.web>
	<httpRuntime maxUrlLength="10999" maxQueryStringLength="2097151" ...

As a Conclusion

The main idea here, and what we have to remember, is how we can -and have to- always strive to make content editors' lives easier.
The Umbraco Grid is very young and we have still to learn a lot about how to get the most out of it.
I hope that this post will be useful and give new ideas for the Grid's uses.
Newbie's Guide to Setting Up an Umbraco Website
— by Blake Smith
So you've got Umbraco installed. Now what? It's not far from the truth to say that newcomers to Umbraco first take a look and think "what do I do next?" If this sounds familiar then this tutorial is for you!

Let's assume you have a shiny new instance of Umbraco setup and you are given a design and just need to "hook it up". For demonstration purposes I've gone to startbootstrap.com and downloaded the freelancer template. We are going to hook up this template and the accompanying files in Umbraco and make it easy for content editors to manage.

Step 1: Evaluate your design

We want to determine how to set up this design in Umbraco so that it can be easily managed by our content editors. In order to do this, we need to evaluate our design and break it up into different sections. The editable items in our sections are properties, and the sections will be our Document Types.

Tip: When building your Document Types in Umbraco, assume your content editor is not familiar with code and setup your properties in such a way that the editor will not have to write any markup.

 [image: Design Evaluation]

 Design Evaluation

Once you have a better understanding of the Data Types available in Umbraco this initial design evaluation will become easier.

Take a look at the example design evaluation. You will see that we have set up five sections. For the Home Section we can set this up as a Home Document Type and combine our Footer Section into the same document type. Our Folio Section is going to be a simple document type, with just a textstring for the header property. The Portfolio Items themselves will be different document types that are child nodes of the Folio Section in the content tree. These portfolio items will have their own properties filled out in order to populate the details that popup on click. The About Section will be its own document type as well as the Content Section.

Step 2: Create a Custom Data Type

Since Umbraco 7 no longer includes the simple editor data type we are going to create our own. This will be used when we setup our document types. Head to the Developer section and right click on Data Types and click Create. Name your new data type Simple Editor and choose Richtext Editor from the Property editor drop down list and then click Save. You will see that you can now customize this Richtext Editor. Select only simple properties including bold, italic, link, styles and unlink. Once you have selected these checkboxes click Save.

[image: create data type]

Step 3: Set up your Document Types

Setting up your Document Types in Umbraco is a critical part of keeping your website organized and easy to manage for your content editors. Looking at our design evaluation, we can determine that every section has a header textstring. Let's take these common properties and put this on our master document type, that way every document type that we create underneath of the Master will inherit these properties. Login and head over to the Settings, right click on Document Types and click Create.

[image: create doc type]

Name your new document type Master and uncheck the Create matching template checkbox. Since we are only using this document type to only setup common items for our future document types we only need a couple things. First let's setup a new tab to put all our properties on for our document types. Click the Tabs tab and create a new tab called Content.

[image: Master Doctype New Tabs]

Click New tab. You can see that your tab has been added to your document type. Now let's go over to the Generic properties tab and setup our common properties.

On the Generic properties tab we want to setup a header textstring so that when we create our new document types they will start off already having this property and we won't need to add it every time. Start by clicking Click here to add a new property and fill out the information as follows.

	Name: Header

	Alias: header

	Type: Textstring

	Tab: Content

You will notice that the alias will populate automatically using camel casing based on the name you entered.

Tip: For long names, you can manually shorten your alias by entering a new one that will be easier to use later in your code.

Click Save to save your new property. Your Master document type generic properties tab should look like this now.

[image: Master Doctype Generic Props]

Now that we have setup our common properties, let's set up our Home document type. Right click on Master and create a new document type.

Name our new doc type Home and click Create matching template. Since this is a one page site, we are not going to need more than one template so when you create the rest of your document types make sure to uncheck that checkbox.

Now that we have our Home document type made, let's configure it. We can start by choosing a new icon, I'm going to pick a home icon for my homepage document type.

[image: Home Doctype Icon]

Next let's look at the Structure tab. We want the homepage to be the only thing at our root level so select the checkbox for Allow at root. We don't need the list view and we don't have any other child node types setup to allow just yet.

[image: Home Doctype Structure]

Click Save to save your changes and let's add new tabs to our homepage doc type. Go to the Tabs tab and add a new tab called Footer and another one called SEO. Next let's look at the Generic properties tab. You can see on here that there is the tab named Content that has been inherited from the Master. Since we setup the header property on our master, our homepage is already going to have that property on it. Based on our design evaluation we need the image and description properties setup on our Content tab. Click Click here to add a new property and fill out the information as follows.

Note: For the Image property you could you the image cropper or upload options here based on your needs.

	Name: Image

	Alias: image

	Type: Media Picker

	Tab: Content

Click Save to save your new property. We will need to repeat this same process whenever we add new properties to document types in Umbraco. Now add the description to our home doc type to the Content tab. Next let's add the footer section properties to our document type on the Footer tab. Create a new property as follows:

	Name: Column 1

	Alias: column1

	Type: Simple Editor

	Tab: Footer

Click Save to save your changes and create the remaining 2 properties for the footer in the same way.

Lastly, create a textstring property for the page title tag and a textbox multiple to put on the SEO tab for our homepage. Your SEO tab should like this.

[image: Home Doctype Seo Prop]

Use these steps to setup the rest of your document types using the name and type we determined in the Design Evaluation.

Remember:

	The header property is inherited by child document types of the Master (you won't need to add this again)

	Uncheck the Create matching template checkbox (since this is a one page site, we don't need templates for all our nodes)

	Ignore the Structure tab for now

Once you have created all your document types your Settings menu in Umbraco should look like this:

[image: Settings Menu With Doc Types]

Now let's go back to our home doc type and view the structure tab. Now you will see that the Allowed child node types list has the list of document types that we have created. From our homepage we want to be able to create a new about, contact and folio child nodes in our Contact section. In order to do this, check these checkboxes and click Save.

[image: Home Doctype Structure Checked]

The Folio document type will also need the Folio Item document type allowed. Navigate to the Structure tab and allow this child node type and click Save.

[image: Folio Doctype Structure]

Step 4: Import your design files

The template files you are given include things like the css, web fonts, images, and javascript. Let's copy these to the proper areas in Umbraco's file system and make sure that our URL's are updated accordingly to the new file locations. Move the css and javascripts file into the css and scripts files located in our Umbraco file system. I moved the fonts into a fonts folder located in the css folder and update the links to these fonts in their corresponding css files. The img folder contains images that we are going to let our editor pick so these will need to be uploaded into our Media section. In order to upload images into our media let's go to the Media section in Umbraco and right click on Media, click Create, click Folder, and name your Folder.

Tip: Use folders to keep your media section organized.

Now that we have our new Images folder we want to drag and drop our images into this new folder. We can use Images for our profile.png and create a new folder for Portfolio Images and drag and drop the rest of our portfolio images there.

[image: Media Images]

Our static index.html file that is used for our website will need to be broken out into different views but for now, we can add this HTML markup onto our Home Template in the Settings section. Make sure you don't delete the inherits and layout statements in the top of your template and remember to update the links to the new location for our css, script, and webfont files.

If you reload your Stylesheets and Scripts folder in the Settings menu you will see the files have been added in Umbraco.

[image: Settings Menu With Files]

Step 5: Setup your Templates and Partial Views

In the markup that we copied to our home template you will see that they have comments where each section begins. We are basically going to take these sections out of the homepage template and create partial views out of them. This area will require some knowledge of razor to setup functionality of the different sections. Writing the razor itself is beyond the scope of this article, but you can check out how I did this over on github in the Views folder. The portfolio grid partial also includes the "for-each" loop that will go through each folio item to put them in the grid. The portfolio modals partial generates the content of each portfolio items modal.

Once you have broken out your Partial Views from your home template you should have a structure similar to this.

[image: Settings Menu With Views]

Tip: For more information on templating in Umbraco check out the templating videos on Umbraco.TV.

Step 6: Create your Content

Now that we have our template and views setup, let's head over to our Content section and start creating our nodes. Right click on Content, click Create, and click Home. Name your new home page and begin adding in your content. Your home page will have the properties on it that you setup on your home doc type.

Creating Content is pretty straight forward, it is the initial setup of the document types, their structure, and getting the templates sorted that is where the focus of your Umbraco setup should be. Setting up your document types properly will help you keep your website organized and make it easier for your content editors to manage. Go ahead and create the rest of your content. Your structure should look like this when you are finished.

[image: Content Menu]

After you have your content in your site, you can preview it by going to the homepage properties tab and clicking the link to document.

Wrap up

You should have a working site if you setup your template and partial views correctly. Your content editors will easily be able to manage the content within Umbraco. The form itself will take a developer's time to setup the model and controller to make it work but you could look into form packages that let you build your own forms in Umbraco such as Contour. It is a very user friendly package that can get your forms up and running in no time without a developer.

Hopefully this tutorial was helpful for Umbraco newbies and can get you started with setting up your next Umbraco site. There are many different ways that you can setup your Umbraco site so just try to keep things organized and good luck in future endeavors!

Download it from GitHub

You can checkout the files I used for this project on github.
Upgrading Umbraco using Git
— by Lee Kelleher
With the recent release of Umbraco 7.2.0, I know there will be many developers who are itching to try out the latest and greatest features, including the new Grid editor.

The Our Umbraco documentation site contains details on how to upgrade an existing installation - this also covers special considerations for specific versions.

Whenever I perform an upgrade, my main issue is with merging my custom configurations with the default core files. For this part I like to leverage a diff engine that comes with a source-control system, in my case I prefer to use Git.

New to Git?

If you are not familar with the Git source-control system, then I'd advise taking a little time to read up on the basics: GitHub offer an excellent 15 minute Code School tutorial and for more technical topics, there is a free Pro Git book.

Once you are familar with the basics, you'll be able to add your Umbraco installation to a local Git repository. If you need advice on which files and folders to exclude from version-control, please refer to the .gitignore for Umbraco (hosted on GitHub).

Pro tip: To create a 'dot-file' in Windows Explorer, add a '.' to the end of the filename, e.g. ".gitignore."

As for which Git client to use, that is up to you. Personally I use the GitExtensions client, but there are popular alternatives like GitHub for Windows or SourceTree.

Preparing for upgrade

Once you have your Umbraco installation in a Git repository, you can then prepare for an upgrade.

For this example, I am going to take an existing v7.1.9 installation (using the excellent LocalGov Starter Kit starter-kit) and we'll upgrade it to v7.2.0.

Caveat: As always, please make a separate backup of your Umbraco files and database.

Yes, yes, I know the files *should* be covered by Git, but for this article let us err on the side of caution. ;-)

Next, we download a copy of the latest Umbraco release zip from the Our Umbraco website. Extract the contents of the zip archive into the folder of your existing Umbraco installation. Literally "replace all the files in the existing directory".

Once all the files from the release zip have copied over, go to your Git client - you should see that there are a lot of modified files!

 [image: GitExtensions toolbar - Commit button displaying the number of modified files]

 GitExtensions toolbar - Commit button displaying the number of modified files

When you click on the "Commit" button, it will open a window containing all of the modified files.

 [image: GitExtensions commit panel - displaying modified files]

 GitExtensions commit panel - displaying modified files

The left-side panel will list all the modified files, and the right-side will display the differences of the selected file. In the screenshot above, we can see that the businesslogic.xml has new content added.

Side-note: For those curious, this file is the XML code documentation for the businesslogic.dll - this change illustrated means that a new class - WebformsPageTreeAuthorizeAttribute - has been added to the assembly.

Pre-upgrade

The next step is to go through each modified file in the list and check whether it can be committed as is, (staged) or if it requires some further attention.

The main folders where you are likely to have customisations are:

	/Config/*.config

	/Umbraco/Config/Create/UI.xml

	/Umbraco/Config/Lang/*.xml

	/Web.config

 [image: GitExtensions commit panel - staging modified files]

 GitExtensions commit panel - staging modified files

Generally the rest of the modified files will be core code fixes, but do keep a careful eye out if you have made any other customisations to the Umbraco core files.

When you do find a modified file that has overwritten some of your customisations, we can investigate the changes at a granular level - restoring our customisations and staging the core additions.

For example, we had the LocalGov Starter Kit starter-kit installed, which comes with its own dashboard control. We can see from the next screenshot that the /Config/Dashboard.config has several changes - some lines added, modified and removed.

 [image: GitExtensions commit panel - viewing file customisations]

 GitExtensions commit panel - viewing file customisations

This is the part where Git comes into its own, it enables you to select which lines that you want to commit and/or revert back to a previous state.

 [image: GitExtensions commit panel - stage selected lines]

 GitExtensions commit panel - stage selected lines

Looking through the additions, we see that there is a new section called "StartupFormsDashboardSection" - this looks good, so we want to commit that. Now you can highlight the lines that you want to commit, then right-click and select "Stage selected line(s)" (or press the "S" key).

The same approach applies to reverting your customisations. Highlight the lines that you want to restore, then right-click and select "Reset selected line(s)" (or press the "R" key).

Once you've gone through each line of the file, you will end up with a staged version of it, which you are able to review again before you commit.

This process also gives you a good opportunity to see what has been fixed and updated throughout the Umbraco core... you never know, it may find a hidden gem?

Note: Before we move on to upgrade itself, there are a couple of things to verify with the /Web.config file. Make sure that the database connection-string for "umbracoDbDSN" is reverted back to its original value - otherwise the upgrade script wont know where your Umbraco database is.

At this point, you can either commit the files to your local repository, or keep them in the staged area. If you commit, give it a message like "Preparing for upgrade to Umbraco 7.2.0".

Now the upgrade itself!

Open your Umbraco installation in your web-browser and follow the on-screen instructions...

 [image: Umbraco upgrade screen - what time is it?]

 Umbraco upgrade screen - what time is it?

... once completed, you should be taken to the Umbraco back-office. There you can verify that all your content is there and everything upgraded as expected!

Post-upgrade analysis

After the upgrade, if you go back to your Git client, you will notice that there are a couple of files that have been modified. This is expected, as files like /Web.config and /Config/ClientDependency.config are updated during the upgrade to increment the version number.

You can now stage and commit those post-upgrade modifications.

TL;DR;

This article tries to show how using Git can help with the upgrade process for Umbraco. By using the diff-engine it is possible to make granular customisations to updated core files.

There are many different ways to perform an upgrade, this article wasn't intended as a definitive guide. If it helps someone with their upgrade concerns, that is good news.

Wishing everyone in the Umbraco community a very Merry Christmas... all the best!

Architecture based on IoC/DI for Umbraco packages
— by Fabrice Loudet
1) Introduction

This article is about using Inversion Of Control (IoC), Dependency Injection (DI) in an Umbraco MVC website and how it fits well with auto mapping of umbraco document type properties to view model.
We will see that this architecture fits very well with the creation of a custom Umbraco package where you need to extend or modify the core functionalities of the package without having to give the source code.

To fully understand this article, you need to have some basic notions about MVC in Umbraco and IoC/DI in general :

Doc about MVC in Umbraco :
- http://our.umbraco.org/documentation/Reference/Templating/Mvc/
Doc about IoC/DI with autofac :
- http://docs.autofac.org/en/latest/getting-started/index.html
- http://docs.autofac.org/en/latest/integration/mvc.html
Doc about getting started with Umbraco and autofac :
 - http://our.umbraco.org/documentation/Reference/Mvc/using-ioc

2) Background

I'm a developer at www.novicell.dk. I have developed a Novicell internal Umbraco 6 package called "Novicell Event Module".
The package allows to create and manage event pages. You can signup for an event choosing options like "which session you want to participate" or "what kind of food you want at the event".
A custom section allows the client to manage the participants per event and export them to excel.

Each time we sold the module, we encountered the same problem : the customer wanted to highly customize the behaviour, like adding a maximum of participants per event, send an email/sms reminder etc.
The architecture was not very flexible and we end up having to modify the source code per project in order to satisfy the needs.

I decided to rewrite the project entirely (together with the talented Mads Pedersen) for Umbraco 7 MVC with a more flexible architecture based on IoC, DI and auto-mapping of view models.

This architecture provides a solution to extend the behaviours of the package without having to change the source code.

The package is finally called uEvent and will be available as an Umbraco commercial package in February 2015.

The package will come together with some extended DI classes (that add new functionalities to the package) available for free on Github.

3) Inversion of Control in an Umbraco MVC architecture.

In a "true" MVC Umbraco solution, you would have a custom Controller (umbraco hijacking routes) creating a View Model based on the current node properties and return this view model to a View.

So your controller classes should look something like :

// Custom controller to display the view
public class DocTypeNameController : RenderMvcController
{
 public override ActionResult Index(RenderModel model)
 {
	 MyViewModelClass myViewModel = BusinessHelper.CreateViewModel(model);
 return CurrentTemplate(myViewModel);
 }	
}

// Custom controller for actions like post a form or render a Action Child view
public class MySurfacteController : SurfaceController
{
	[HttpPost]
 public ActionResult DoSomething(MyViewModelClass model)
 {
		if (!ModelState.IsValid)
 return CurrentUmbracoPage();
				
	 BusinessHelper.DoSomeLogic(model);
		
		return to partial view or something else
	}
}

Even if the logic is encapsulated in a business layer (BusinessHelper in the example), there is no way for a user of these classes to change the logic. IoC/DI can solve this problem.

At first, we will execute the logic by an external "Service" class (IoC):

// Custom controller to display the view
public class DocTypeNameController : RenderMvcController
{
 private readonly IMyService _myService;

 public UEventListController(IMyService theService)
 {
 _myService = theService;
 }

 public override ActionResult Index(RenderModel model)
 {
	 MyViewModelClass myViewModel = _myService.CreateViewModel(model);
 return CurrentTemplate(myViewModel);
 }	
}

// Custom controller for actions like post a form
public class MySurfacteController : SurfaceController
{
	private readonly ISurfaceMyService _myService;

 public UEventListController(ISurfaceMyService theService)
 {
 _myService = theService;
 }

	[HttpPost]
 public ActionResult DoSomething(MyViewModelClass model)
 {
		if (!ModelState.IsValid)
 return CurrentUmbracoPage();
				
	 _myService.DoSomeLogic(model);
		
		return to partial view or something else
	}
}

In this case, the services are responsible to do all logics instead of the BusinessHelper in the controllers.
So if you create an instance of your controller with a different service, you can have a different/enhance behaviour for your page.

But how to "inject" a service into a controller ? That's where Dependency Injection comes into the picture...

4) Dependency Injection in Umbraco

We first had to choose a Dependency Injection Framework. There are lots available for .NET but we chose Autofac after reading this great reference article : http://our.umbraco.org/documentation/Reference/Mvc/using-ioc
This article explains in more detail what I wrote above and also explains how to use Autofac to inject a service class into a controller. I won't repeat the article more, please read it thraugh if you want more detail about it.

To install Autofac, just use nuget : https://www.nuget.org/packages/Autofac.Mvc4/

We will go a bit further in this chapter and explain how to use a config file to select which classes to inject.

The initialisation of Autofac is done in the OnApplicationStarted method.
In the official Umbraco reference article mentioned above, the implementation of the service/context that will execute the logic is hardcoded in OnApplicationStarted :
"builder.RegisterType<MyAwesomeService>();"
And the class MyAwesomeService, will be injected in all constructors that need it.

It would be more flexible to use a config file to define these classes. And it can be done very easily with Autofac by adding a config file path as parameter of the RegisterModule method.

Example of OnApplicationStarted :

public void OnApplicationStarted(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
{
	var builder = new ContainerBuilder();
	
	//register all controllers found in this assembly
	builder.RegisterControllers(typeof(SomeClassInMyAssembly).Assembly);

	// specify the config file here :
	builder.RegisterModule(new XmlFileReader(HttpContext.Current.Server.MapPath("config/autofac.config")));
	builder.RegisterModelBinderProvider();	
	builder.RegisterApiControllers(typeof(UmbracoContext).Assembly);

	// my custom section (the class the inherit from TreeController) stopped working after adding autofac and I found the solution here :
	// http://our.umbraco.org/forum/getting-started/installing-umbraco/46674-U701-build-200-Failed-to-retrieve-data-for-application-tree-content
	// see answer from Martin that point to http://blogs.msdn.com/b/roncain/archive/2012/07/16/dependency-injection-with-asp-net-web-api-and-autofac.aspx	
	builder.RegisterAssemblyTypes(typeof(SomeClassInMyAssembly).Assembly).Where(t => !t.IsAbstract && typeof(ApiController).IsAssignableFrom(t)).InstancePerMatchingLifetimeScope(AutofacWebApiDependencyResolver.ApiRequestTag);

	IContainer container = builder.Build();
	DependencyResolver.SetResolver(new AutofacDependencyResolver(container));
}

Example of config file :

<autofac defaultAssembly="myProject.Library">
 <components>
 <!-- Service to map to View Model properties -->
 <component type="myProject.Library.Services.MapService, myProject.Library" service="myProject.Library.Services.IMapService" />
 <!-- Service to custom logic on post -->
 <component type="myProject.Library.Services.CustomLogicOnPostService, myProject.Library" service="myProject.Library.Services.ICustomLogicOnPostService" />
 <!-- View model to use -->
 <component type="myProject.Library.ViewModels.MyViewModel, myProject.Library" service="myProject.Library.ViewModels.IMyViewModel" />
 </components>
</autofac>

As you can see, you can use dependency injection to specify the services that do some logic (myProject.Library.Services.MapService in the example) but also any kind of classes like which ViewModel class to use (myProject.Library.ViewModels.MyViewModel).
This is really useful when you add new property to your document type, you just need to inherit and extend the base view class (or interface) and if the service uses auto mapping, it will automatically map the extended node to the custom view model.

With this architecture, you can distribute an Umbraco package with some basic doc types and basic services, and the developers should be able to add new functionalities by extending the base classes/interfaces and register the new classes in the autofac.config

Example of Controller using the custom service and view :

public class DocTypeNameController : RenderMvcController
{
	private readonly IMyService _myService;

 public UEventListController(IMyService theService) // "theService" is injected automatically by Autofac with the class specified in the autofac.config
 {
 _myService = theService;
 }

 public override ActionResult Index(RenderModel model)
 {
		// we get the view model configured in the autofac.config. You can use an interface or a class if some properties are mandatory.
 IMyViewModelClass viewModel = DependencyResolver.Current.GetService<IMyViewModel>();

		// we will speak later about how to do the Map method that will get all properties and init the view model
		IMyViewModelClass mappedViewModel = eventListService.Map(viewModel, model.Content);		
		
 return CurrentTemplate(myAutoMappedViewModel);
 }	
}

5) Property mapping

The last step of our "architecture package" is to map the Umbraco properties (from the doc type) to our view model.

A first genuine way to implement the "Map" method would be:

public void Map(MyViewModelClass viewmodel, IPublishedContent node)
{	
	viewmodel.Title = node.GetPropertyValue<string>("title");
	etc...	
}

If a developer using your package need to add a new document type property, (like "image"), he will have to :
1) Create an extended ViewModel with a string ImagePath property
2) Create an extended Service that get the "image" property from umbraco and put the image url into the ImagePath of the view model
3) Update the autofac.config to use these classes.

This works ok but for uEvent we wanted to simplify the process and have a Service that can automap the Umbraco properties to the View model in a flexible way.

There are plenty of great frameworks available in Umbraco to solve this problem, like :
 - https://github.com/zpqrtbnk/Zbu.ModelsBuilder/wiki/Zbu.ModelsBuilder
 - https://github.com/leekelleher/umbraco-ditto
 - https://github.com/AndyButland/UmbracoMapper
 - many more...

But we didn't want to add an extra dependency to uEvent and have more flexibility so we rewrite our own based on .NET reflection.

Our implementation of automapping is doing the following algorithm:

For each property of the view model do :

	Step 1 : try to find a method in the service that has the exact same name of the property and use it to init the view model property. => this allows great flexibility for custom mapping

	Step 2 : if no methods have been found in the service, use Umbraco GetPropertyValue method to do the mapping (that works even better in you have installed the great package http://our.umbraco.org/projects/developer-tools/umbraco-core-property-value-converters)

	Step 3 : finally if we still can't map the property, we try to map with the IPublishedContent native properties like Name, Url, CreateDate etc...

And we have developped the same mapper for the Archetype (but we use GetValue instead of GetPropertyValue for Step 2) as the "signup options" of each events are based on the great Archetype.

I won't go further in the implementation on our automapping, if you want to know more about it, please contact Mads (mpe@novicell.dk) or me (flo@novicell.dk).
You can also get a extended version of our automapping that Mads Pedersen released on Github here : https://github.com/kalabakas1/UmbracoObjectMapping/tree/master/MyUmbraco7

Bonus:

If you are interested in strongly type view in MVC with hijacked route controller, I would recommend you to read :
- http://web-matters.blogspot.dk/2014/06/umbraco-mvc-and-strongly-typed-view.html
- http://our.umbraco.org/projects/developer-tools/hybrid-framework-for-umbraco-v7

If you have any questions or improvements, please write them in the comments.

Using Angular in the backoffice - Some useful tips
— by Dave Woestenborghs
It has been little over a year now that Umbraco 7 has been released. With the release of v7, the way we extend the backoffice has been moved from the serverside (Webcontrols, usercontrols, ...) to the frontend (Angular controllers and views).

If you haven't tried out Angular yet, now is a good time to add it to your developer toolbelt.

In this post I will try to explain how to use the components already present in Umbraco to make your life easier when creating property editors or custom sections and trees with Angular.

Notifications

Sometimes you want to display additional information to the user using the built in notifications. You can do that by using the notifactionsService.

This service can be used in your controller by injecting notificationsService as a dependency in your controller.

Out of the box you can use four types of notifications:

	success

	warning

	info

	error

You can display a notification like this:

angular.module('umbraco').controller('MyController',
 function ($scope, notificationsService) {
 notificationsService.success("Success", "Speaker has been deleted");
 });
Displaying a success notification

But you can create your own notification types. You can use the add method of the service for this.

angular.module('umbraco').controller('MyController',
 function ($scope, notificationsService) {
 notificationsService.add({
						headline : 'Custom notification',
						message : 'My custom notification message',
						url: 'http://www.colours.nl',
						sticky : true,
						type : 'custom'
					});
 });
Display a custom notification

Of course this notification needs to have some (ugly) styling applied. You can load a CSS file by adding it to your package manifest, or by using the assetsService.

The CSS will look like this :

.alert-custom{
	background-color: purple;
	color: pink;
	border: 2px dotted green !important;
}

.alert-custom a{
	
	color: pink;
	
}
CSS for styling custom notification

But you can also have your own views displayed by the notificationsService. In the core you can see this with the unsaved changes dialog that pops up when you navigate to another item without saving first.

To show how you can use this yourself, I created a simple property editor that shows a dialog with a custom view when you leave a textbox and the contents is longer than 25 characters. The custom dialog will ask you if you want to trim your text and shows an example of the trimmed text.

 The property editor view :

<div ng-controller="NotificationEditorController">
	<input ng-model="model.value" ng-blur="showNotification()" type="text" class="umb-editor umb-textstring textstring" />
</div>
Property editor view

 The property editor controller :

// add ng-blur directive because this is missing in Angular 1.1.5
angular.module('umbraco.directives').directive('ngBlur', function() {
 return function (scope, elem, attrs) {
 elem.bind('blur', function () {
 scope.$apply(attrs.ngBlur);
 });
 };
});

angular.module('umbraco')
 .controller('NotificationEditorController',
	function($scope, notificationsService) {
	
		// function to trim text to a length of 25
		$scope.TrimText = function() {
			$scope.model.value = $scope.model.value.substring(0,25);
			};
	
		// function to show custom notification
		$scope.showNotification = function() {
			if($scope.model.value.length > 25) {
				notificationsService.add({
					// the path of our custom notification view
					view: "/App_Plugins/CustomNotification/notification.html",
					// arguments object we want to pass to our custom notification
					args: {
						value : $scope.model.value,
						callback : $scope.TrimText
						}
					});
				}
			};
	});	
Property editor controller

As you can see in the above example, we use the add method of the notificationsService to render our own view by setting the view property. We also pass an args object which contains our value and a callback function that we are going to call from our notification. You can decide what the args object consists of.

The notification view :

<div ng-controller="NotificationController">
	<h4>Your Text is too long</h4>
	<p>This can have unwanted visual bugs on your page. Do you want to trim the text ?</p>
	<p>Trimmed text : {{trimmedtext}}</p>
	<button class="btn btn-warning" ng-click="cancel(notification)">No</button>
	<button class="btn" ng-click="trim(notification)">Yes</button>
</div>
Custom notification view

The notification controller :

angular.module('umbraco')
 .controller('NotificationController',
	function($scope, notificationsService) {
		// the notification is set on scope by umbraco, so we can access our args object passed in
		$scope.trimmedtext = $scope.notification.args.value.substring(0,25);
	
		$scope.trim = function(not){
			// call our callback function set on the args object in our property editor controller
			not.args.callback();				
			notificationsService.remove(not);
		};

		$scope.cancel = function(not){
			notificationsService.remove(not);
		};
	});	
Custom notification controller

As you can see here there is a notification object set on the scope. This is handled by Umbraco. The notification object contains the args object that we passed to the view in our property editor controller. When the user clicks the yes button we call our callback function from our property editor controller so it gets executed on the scope of our property editor.

Dialogs

Umbraco comes out of the box with a set of dialogs you can use in your editors. For example mediaPicker, contentPicker, memberPicker, ... But you can also show your own views in a dialog.

To use the dialogs you need to inject dialogService as a dependency on your controller.

As an example I made a property editor for managing contact details. It allows you to select an image for the contact person and edit details like name, email and phone number.

<div ng-controller="ContactEditor.Controller">
	<div>
		
		<div ng-show="thumbnail != ''">
			<umb-image-thumbnail
				width="{{width}}"
				height="{{height}}"
				src="thumbnail"			
				max-size="100"	
				/>
		</div>
		<div ng-show="model.value.image == undefined || model.value.image == ''">
			<i class="icon icon-add blue"></i>
		
		 <localize key="general_add" class="ng-isolate-scope ng-scope">Add</localize>
		
		</div>
		<div ng-show="model.value.image">			
				<i class="icon icon-delete red"></i>
		
		 <localize key="general_delete" class="ng-isolate-scope ng-scope">Remove</localize>
		
		</div>
	</div>
	<div>

		<div>
			<div>
				Name : {{model.value.details.name}}
			</div>
			<div>
				Email : {{model.value.details.email}}
			</div>
			<div>
				Phone : {{model.value.details.phonenumber}}
			</div>
			<i class="icon icon-edit blue"></i>
		
		 Edit
		
		</div>
	</div>
	
</div>
Property editor view

In the view I make use of the umb-image-thumbnail directive. This allows you to show a resized or cropped image in the backend. In my case I want to show an image with max width or height of 100px.

Another directive I'm using is the localize directive, which takes a key and retrevies a localized text from the Umbraco language XML files. The key has to be in the format area_keyalias from the language file.

angular.module('umbraco')
 .controller('ContactEditor.Controller',
	function($scope, dialogService, entityResource) {
		
		// if model value is empty, create empty scope object
		if($scope.model.value == ''){
			$scope.model.value = {};
			$scope.model.value.image = '';
			$scope.model.value.details = {
				email : '',
 			name : '',
 			phonenumber : ''
 			};	
 		$scope.thumbnail = '';	
 		$scope.width = 0;
 		$scope.height = 0;
			}
		else {
			// if existing scope has no image, create empty object
			if($scope.model.value.image == ''){
				$scope.thumbnail = '';	
	 		$scope.width = 0;
	 		$scope.height = 0;
			}
			else {
				// if we have a image id, call information about media item using media resource
				entityResource.getById($scope.model.value.image, "Media").then(function (ent) {
					console.log(ent);
					$scope.thumbnail = ent.metaData.umbracoFile.Value;
					$scope.width = ent.metaData.umbracoWidth.Value;
					$scope.height = ent.metaData.umbracoHeight.Value;					
				});
			}
		}

		$scope.pickImage = function() {
			// open the build in mediapicker
			dialogService.mediaPicker({
				multiPicker : false, // only allow one image to be picked
				// function that is called when the dialog is closed.
				// Selected item(s) will be passed in by the data object
				callback : function(data) { 					
					$scope.model.value.image = data.id;
					$scope.thumbnail = data.thumbnail;
					$scope.width = data.originalWidth;
					$scope.height = data.originalHeight;
					
				}
			});
		};

		$scope.openEditDialog = function () {
			// open a custom dialog
 dialogService.open({
 	// set the location of the view
 template: "/App_Plugins/ContactEditor/dialog.html",
 // pass in data used in dialog
 dialogData: $scope.model.value.details,
 // function called when dialog is closed
 callback: function (value) {
 if (value != null && value != '') {
 $scope.model.value.details.name = value.name;
 $scope.model.value.details.email = value.email;
 $scope.model.value.details.phonenumber = value.phonenumber;
 }
 }
 });
 };

		$scope.removeImage = function() {
			$scope.thumbnail = '';
			$scope.model.value.image = '';			
		};		
	});
Property editor controller

In the controller we have a function called pickImage. This opens the built in mediaPicker. We pass in an options object telling the picker to disable multiselect and a callback function to execute when the user selects an item in the dialog.

The function openEditDialog opens a dialog showing a view we created. We pass in the path of our view in the template parameter. The data we want to edit gets passed to the view using the dialogData parameter. The callback function is a function we call when the data in the dialog is submitted.

<div ng-controller="ContactEditorDialog.Controller">
 <form name="dialogForm" ng-submit="submit(model)">
 <umb-panel>
 <div class="umb-panel-body no-header umb-scrollable with-footer" >
 <umb-pane>
 <umb-control-group label="Name">
 <input type="text" name="name" ng-model="model.name" required />
 </umb-control-group>
 <umb-control-group label="E-mail">
 <input type="email" name="email" required ng-model="model.email" />
 </umb-control-group>
 <umb-control-group label="Phone Number">
 <input type="text" name="phone" ng-model="model.phonenumber" />
 </umb-control-group>
 </umb-pane>
 </div>
 <div class="umb-panel-footer">
 <div class="btn-toolbar umb-btn-toolbar pull-right">

 <localize key="cancel" />

 <button type="submit" class="btn btn-primary" ng-disabled="!dialogForm.$valid">
 <localize key="buttons_save">Save</localize>
 </button>
 </div>
 </div>
 </umb-panel>
 </form>
</div>
Dialog view

angular.module('umbraco')
 .controller('ContactEditorDialog.Controller',
 function($scope) {
 	$scope.model = {
 		name : $scope.dialogData.name,
 		email : $scope.dialogData.email,
 		phonenumber : $scope.dialogData.phonenumber
 	} 	 	
 });
Dialog controller

The dialogData object on the scope of our controller is the one we set in the editor controller. We can now use this data in our dialog.

Reusing existing datatypes

If you ever tried using reusing existing datatype editors in Umbraco V6 or earlier you know that is almost a impossible mission.

Luckily in V7 this has become very easy.

Before I continue, I want you to read this post by Markus Johansson about re-using the Rich Text Editor in a custom section. He explains how the umb-editor directive comes in to play and what the best way is to get this working.

The only problem with the approach from Markus is that you have to find out the config of the editor by taking a deep dive in the Umbraco source code.

I knew this could be done easier because packages like Vorto and Archetype are also using existing datatypes. Looking at the source code of Vorto I saw an API controller was created to get the config from the Umbraco datatype.

Have a look at the source code of the API controller I created for my talk at the Umbraco UK festival. It allows you to get all the information needed by the umb-editor directive.

For the UmbUkFest demo I created an angular resource that handles all calls to this API. The resource can be injected as a dependency into your controllers.

Below you find the code needed to use the Richtext editor datatype in your property editor or custom section once you have the API and the angular resource in place.

datatypeResource.getByName('Richtext editor').then(function (result) {
 $scope.rteField = [
 {
 alias: 'rtefield',
 label: 'Text',
 view: result.data.view,
 config: result.data.config,
 value: $scope.model.rtevalue
 }
];
});

$scope.$watch('rteField', function () {
 if ($scope.rteField != undefined) {
 $scope.session.description = $scope.rteField[0].value;
 }
}, true);
Calling the datatype resource to get the Rich Text editor datatype configuration

 The first part is where we call the resource to get the config from the API and store the result in a JavaScript Array.

The second part is a watch on the array so that we are sure our model gets updated, when something in the Richtext editor is changed by the user.

To render this we just need the following HTML in our view:

<div ng-repeat="editor in rteField">
	<umb-editor model="editor"></umb-editor>
</div>
The html needed to render our Richtext editor

Conclusion

So if you haven't tried Angular yet, use the holidays to get to know the basics.

You don't need to be an angular expert to extend the Umbraco Backend.

And the last tip I have is:

Use the source, Luke

You can find all the angular related code in the Umbraco.Web.UI.Client folder and it is well documented.

Happy ng-holidays !!!
Build a simple contextual language switcher
— by Søren Kottal

 [image:]

For a current project, I had to implement a contextual language switcher, giving the user the ability to switch the language of the current page.

Briefly, I was considering Matt Brailsford's awesome package Vorto. And I even figured out how to use it to store data from the even more awesome grid editor from 7.2. If you're interested in learning this too, look at this forum post. However, I didn't find it fitting and went back to the good old "one root node per language" approach.

So here's how my content structure is set up:

 [image:]

I have the frontpage of each language set up as root nodes, with domain settings, language etc. set up. All Subpages have a multinode treepicker property, for setting up different language versions. This gives the editor the ability to precisely pick which page is the equivalent in other languages. This way I can have different structures in different languages etc.

In my templates I have implemented a language switcher, which uses the before mentioned multinode treepicker as a way to output the correct link. If no language version is set, it just links to the frontpage.

@inherits Umbraco.Web.Mvc.UmbracoTemplatePage
@using umbraco.cms.businesslogic.web
@using umbraco.MacroEngines
@using System.Text.RegularExpressions

@{
 var currentLang = Domain.GetDomainsById(Model.Content.AncestorOrSelf(1).Id)[0].Language;

 var versionIds = Model.Content.GetPropertyValue("languageVersions").ToString().Split(new string[] { "," }, StringSplitOptions.RemoveEmptyEntries);

 var contentRoot = new DynamicNode(-1);
 var languages = contentRoot.Descendants("Frontpage");
}

<button type="button" class="btn btn--navbar dropdown-toggle flag flag--@currentLang.CultureAlias.Substring(0,2)" data-toggle="dropdown"></button>

<ul class="dropdown-menu languageselector pull-right" role="menu">
 @foreach (var lang in languages)
 {

 var thisLang = Domain.GetDomainsById(lang.Id)[0].Language;

 var thisLangName = Regex.Replace(thisLang.FriendlyName,"(,(.*)|[(].*)","").Trim();
 var thisLangDisplay = thisLangName;

 switch(thisLangName) {
 case "Danish":
 thisLangDisplay = "Dansk";
 break;
 case "Swedish":
 thisLangDisplay = "Svenska";
 break;
 case "Norwegian":
 thisLangDisplay = "Norsk";
 break;
 }

 if (thisLang == currentLang)
 {
 <li class="active"><i class="flag flag--@thisLang.CultureAlias.Substring(0,2)"></i>
 @thisLangDisplay

 }
 else {
 var link = lang.Url;

 if (versionIds.Any())
 {
 foreach (var versionId in versionIds)
 {
 var version = Umbraco.TypedContent(versionId);
 if (version != null)
 {
 if (version.AncestorOrSelf(1).Id == lang.Id)
 {
 link = v.Url;
 break;
 }
 }
 }
 }

 <i class="flag flag--@thisLang.CultureAlias.Substring(0,2)"></i>
 @thisLangDisplay

 }
 }

This basically boils down to looping through the different rootnodes, get their language, and then loop through the language versions of the current page until it meets a match. This means if two pages from the same language are set as language versions, the first one gets the link.

Another usecase for a language version property could also be for setting canonical language URLs for SEO benefits. This could be as simple as:

if (versionIds.Any())
{
 foreach (var versionId in versionIds)
 {
 var version = Umbraco.TypedContent(versionId);
 if (version != null)
 {
 	var lang = Domain.GetDomainsById(version.AncestorOrSelf(1).Id)[0].Language.CultureAlias;

 	<link rel="alternate" href="@version.Url" hreflang="@lang" />
	 }
	}
}

Feel free to comment. Some of my code examples could probably be done in a better way :)
All Your Images Are Belong to Umbraco
— by James South

 [image: Umbraco - Zero Wing Edition.]

 Umbraco - Zero Wing Edition.

Today I am going to talk to you about a tool that has been shipped within the Umbraco core since v7.1. It powers the Image Cropper property editor but can do much much more to help you build high quality, performant websites. That tool is called ImageProcessor.

ImageProcessor is actually two libraries: ImageProcessor - A library for desktop and web that provides a fluent API allowing you to easily chain methods to deliver the desired output, and ImageProcessor.Web - A web extension to ImageProcessor that allows the developer to perform image manipulation using a Url API of querystring parameters as instructions.

The Ever Increasing Web

Web pages are getting bigger. According to the HTTP Archive in the last year the average web page has gone up by 252kb to a whopping 1953kb with 213kb of that due to images. I don't know about you but I find that to be a worrying trend, especially in this age of responsive websites and increased mobile browser usage.

	December 15th 2013	December 1st 2014

	

 [image: At 1030kb Image weight is already high.]

 At 1030kb Image weight is already high.

	

 [image: 1243kb Eeek!]

 1243kb Eeek!

Thankfully with Umbraco we have all the tools available to us to keep our webpages snappy.

Image Cropper

If you are using Umbraco 7 and you don't use the Image Cropper property editor then you are sorely missing out; it's pretty sweet. The Image Cropper utilizes ImageProcessor.Web's Url API to generate crops of your images that are then cached in a super awesome auto cleaning diskcache mechanism that will serve the cropped image on subsequent requests.

It's possible to alter the generated url further to improve performance like this. Any of the ImageProcessor commands can be appended to the URL.

Dropping the quality slightly can dramatically decrease filesize without affecting the appearance.

Slimsy

This is a rather neat little package written by Jeavon Leopold that when used in conjunction with ImageProcessor.Web and the built-in Umbraco Image Cropper will make your websites images respond to the viewport width and also the pixel density if supported by the client browser. It does this by providing extension methods and performing calculations on-the-fly via JavaScript to provide the correct instructions to the Url API.

It's very flexible and I highly recommend you have a look at it.

@foreach (var feature in homePage.umbTextPages.Where("featuredPage"))
{
 <div class="3u">
 <!-- Feature -->
 <section class="is-feature">
 @if (feature.HasValue("Image"))
 {
 var featureImage = Umbraco.Media(feature.Image);

 }
 <h3>@feature.Name</h3>
 @Umbraco.Truncate(feature.BodyText, 100)
 </section>
 <!-- /Feature -->
 </div>
}
An initial image size of 270 x 161. This example is looping pages, each page has a media picker with property alias "Image"

Presets

ImageProcessor.Web has the ability to translate preset instructions passed to the Url API. (I find this very useful when generating images for specific items in widget based setups where you don't care so much about art direction). Presets allow you to configure the image output in a single location making it easy to tweak output for improved performance.

To set up presets you need the correct configuration files installed in your website. There's a nuget package available - ImageProcessor.Web.Config which allows you to install the files but there is also extensive documentation online so you can set it up yourself.

Here's an example of a signpost.

<div class="signpost">
 <!-- Signpost-->
 @if (signpost.HasValue("Image"))
 {
 var signpostImage = Umbraco.Media(signpost.Image);

 }
 <h3>@signpost.Name</h3>
 <!-- /Signpost -->
</div>
A single signpost item with preset applied.

With the relevant configuration.

<?xml version="1.0" encoding="utf-8" ?>
 <processing preserveExifMetaData="false">
 <!-- Presets that allow you to reduce code in your markup.
 Note the use of & to escape ampersands. -->
 <presets>
 <preset name="signpost" value="width=768&height=480&mode=crop"/>
 </presets>
 <!-- List of plugins. -->
 <plugins autoloadplugins="true">
Sample configuration trimmed for brevity.

Pre Processing

All the previous shown methods involve postprocessing the uploaded image on first instance of the page loading. This works perfectly 99% of the time but chances are there will be a client somewhere that will upload a huge image that will cause a performance hit as ImageProcessor processes and saves it for subsequent viewing.

Fortunately there is a way to deal with this.

Umbraco provides various events that you can tap into when saving media and you can use ImageProcessor's fluent API within these events to resize any images when they are saved to the media section. Here's the relevant code to demonstrate how to do this.

public class ApplicationEvents : ApplicationEventHandler
{
 protected override void ApplicationStarting(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
 {
 // Tap into the Saving event
 MediaService.Saving += (sender, args) =>
 {
 MediaFileSystem mediaFileSystem = FileSystemProviderManager.Current.GetFileSystemProvider<MediaFileSystem>();
 IContentSection contentSection = UmbracoConfig.For.UmbracoSettings().Content;
 IEnumerable<string> supportedTypes = contentSection.ImageFileTypes.ToList();

 foreach (IMedia media in args.SavedEntities)
 {
 if (media.HasProperty("umbracoFile"))
 {
 // Make sure it's an image.
 string path = media.GetValue<string>("umbracoFile");
 string extension = Path.GetExtension(path).Substring(1);
 if (supportedTypes.InvariantContains(extension))
 {
 // Resize the image to 1920px wide, height is driven by the
 // aspect ratio of the image.
 string fullPath = mediaFileSystem.GetFullPath(path);
 using (ImageFactory imageFactory = new ImageFactory(true))
 {
 ResizeLayer layer = new ResizeLayer(new Size(1920, 0), ResizeMode.Max)
 {
 Upscale = false
 };

 imageFactory.Load(fullPath)
 .Resize(layer)
 .Save(fullPath);
 }
 }
 }
 }
 };
 }
}
Using Umbraco events to preprocess images.

Onwards and Downwards

Hopefully this is enough to get you all started making the most of ImageProcessor within Umbraco. If you need any more information feel free to read the documentation at ImageProcessor.org or hit me up on the forums.

Together we can all do our bit to ensure next year the charts show a swing in the other direction.
Modify Umbraco URLs with the UrlProvider and ContentFinder
— by Jeroen Breuer
I'm Jeroen Breuer and I work as a developer at Have A Nice Day Online. These days Umbraco has a lot of public APIs which make it possible to modify URLs. This is done with the help of an UrlProvider and ContentFinder.

Change the home URL

For years I've been using the "ultimate" site structure setup. Sebastiaan's post might be old, but it's still pretty up to date. The only part which can be improved these days is that after you've set the internal redirect the homepage URL is still /home. You can change this with the following UrlProvider:

public class HomeUrlProvider : IUrlProvider
{
 public string GetUrl(UmbracoContext umbracoContext, int id, Uri current, UrlProviderMode mode)
 {
 var content = umbracoContext.ContentCache.GetById(id);
 if (content != null && content.DocumentTypeAlias == "Home" && content.Parent != null)
 {
 //The home node will have / instead of /home/.
 return content.Parent.Url;
 }

 return null;
 }

 public IEnumerable<string> GetOtherUrls(UmbracoContext umbracoContext, int id, Uri current)
 {
 return Enumerable.Empty<string>();
 }
}

After this the homepage URL will become the URL of its parent which is the site node. Even in the backoffice. The internal redirect is still active so visiting the parent URL will show the homepage. You don't need the urlRewrite anymore. The HomeUrlProvider needs to be registered, but that code will be shown below. This is also part of the Hybrid Framework.

Add an extra segment in the URL

Part 1: The UrlProvider

In Umbraco the URL structure is pretty straightforward. The URL is the same as the tree structure. All the node's parents are segments in the URL, but what if you want to add a segment that's not a parent node? For example a date in a news page. The following UrlProvider will add the date as a segment to the URL.

public class NewsUrlProvider : IUrlProvider
{
 public string GetUrl(UmbracoContext umbracoContext, int id, Uri current, UrlProviderMode mode)
 {
 var content = umbracoContext.ContentCache.GetById(id);
 if (content != null && content.DocumentTypeAlias == "Newsitem" && content.Parent != null)
 {
 var date = content.GetPropertyValue<DateTime>("date");
 if(date != null)
 {
 //This will add the selected date before the node name.
 //For example /news/item1/ becomes /news/28-07-2014/item1/.
 var url = content.Parent.Url;
 if (!(url.EndsWith("/")))
 {
 url += "/";
 }
 return url + date.ToString("dd-MM-yyyy") + "/" + content.UrlName + "/";
 }
 }

 return null;
 }

 public IEnumerable<string> GetOtherUrls(UmbracoContext umbracoContext, int id, Uri current)
 {
 return Enumerable.Empty<string>();
 }
}

Part 2: The ContentFinder

Now that the URL has an extra segment you'll get a 404 when trying to visit the page. That's because the URL segments don't match the tree structure anymore. We need to create a ContentFinder that returns the correct node based on the URL. The following ContentFinder does this for the news.

public class NewsContentFinder : IContentFinder
{
 public bool TryFindContent(PublishedContentRequest contentRequest)
 {
 try
 {
 if (contentRequest != null)
 {
 //Get the current url.
 var url = contentRequest.Uri.AbsoluteUri;

 //Get the news nodes that are already cached.
 var cachedNewsNodes = (Dictionary<string, ContentFinderItem>)HttpContext.Current.Cache["CachedNewsNodes"];
 if (cachedNewsNodes != null)
 {
 //Check if the current url already has a news item.
 if (cachedNewsNodes.ContainsKey(url))
 {
 //If the current url already has a node use that so the rest of the code doesn't need to run again.
 var contentFinderItem = cachedNewsNodes[url];
 contentRequest.PublishedContent = contentFinderItem.Content;
 contentRequest.TrySetTemplate(contentFinderItem.Template);
 return true;
 }
 }

 //Split the url segments.
 var path = contentRequest.Uri.GetAbsolutePathDecoded();
 var parts = path.Split(new[] { '/' }, System.StringSplitOptions.RemoveEmptyEntries);

 //The news items should contain 3 segments.
 if (parts.Length == 3)
 {
 //Get all the root nodes.
 var rootNodes = contentRequest.RoutingContext.UmbracoContext.ContentCache.GetAtRoot();

 //Find the news item that matches the last segment in the url.
 var newsItem = rootNodes.DescendantsOrSelf("Newsitem").Where(x => x.UrlName == parts.Last()).FirstOrDefault();
 if(newsItem != null)
 {
 //Get the news item template.
 var template = Services.FileService.GetTemplate(newsItem.TemplateId);

 if (template != null)
 {
 //Store the fields in the ContentFinderItem-object.
 var contentFinderItem = new ContentFinderItem()
 {
 Template = template.Alias,
 Content = newsItem
 };

 //If the correct node is found display that node.
 contentRequest.PublishedContent = contentFinderItem.Content;
 contentRequest.TrySetTemplate(contentFinderItem.Template);

 if (cachedNewsNodes != null)
 {
 //Add the new ContentFinderItem-object to the cache.
 cachedNewsNodes.Add(url, contentFinderItem);
 }
 else
 {
 //Create a new dictionary and store it in the cache.
 cachedNewsNodes = new Dictionary<string, ContentFinderItem>()
 {
 {
 url, contentFinderItem
 }
 };
 HttpContext.Current.Cache.Add("CachedNewsNodes",
 cachedNewsNodes,
 null,
 DateTime.Now.AddDays(1),
 System.Web.Caching.Cache.NoSlidingExpiration,
 System.Web.Caching.CacheItemPriority.High,
 null);
 }
 }
 }
 }
 }
 }
 catch (Exception ex)
 {
 Umbraco.LogException<NewsContentFinder>(ex);
 }

 return contentRequest.PublishedContent != null;
 }
}

Currently the code just looks for a news node which matches the name of the last part of the URL. That could probably be improved, but for this example it's fine.

Part 3: Clear the cache

After the node is found it's also added in a custom cache layer. Because of that the ContentFinder doesn't need to look for the node each time the page is requested. Make sure to clear the cache after save and publish because otherwise you'll get a cached node which is not up to date:

ContentService.Published += Content_Published;
private void Content_Published(IPublishingStrategy sender, PublishEventArgs<IContent> e)
{
 //Clear the content finder cache.
 HttpContext.Current.Cache.Remove("CachedNewsNodes");
}

Part 4: Register the UrlProvider and ContentFinder

The above code won't work just yet. It needs to be registered in the ApplicationStarting event.

protected override void ApplicationStarting(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
{
 //With the url providers we can change node urls.
 UrlProviderResolver.Current.InsertTypeBefore<DefaultUrlProvider, HomeUrlProvider>();
 UrlProviderResolver.Current.InsertTypeBefore<DefaultUrlProvider, NewsUrlProvider>();

 //With the content finder we can match nodes to urls.
 ContentFinderResolver.Current.InsertTypeBefore<ContentFinderByNotFoundHandlers, NewsContentFinder>();
}

After this your news items will have the date in the URL and visiting the modified URL will still return the correct news item.

The NewsUrlProvider and NewsContentFinder are also part of the Hybrid Framework best practises so you can find a working example there.

The possibilities

With the UrlProvider and ContentFinder nothing is impossible with URLs in Umbraco. On a big project at work we even completly replaced the default UrlProvider and ContentFinder that Umbraco uses. By default Umbraco only supports setting a domain at a single level. If you have domains at multiple levels only the URLs for the deepest domain in the tree are generated. For this website we needed all URLs for all the domains at multiple levels. For example a page needed to be accessible at www.website.com/level1/level2/level3/, but also at www.level2-website.com/level3/. So the website node has a domain and also the level2 node. Without changing the source code we were able to support this. The following code switched the default UrlProvider and ContentFinder with our own:

protected override void ApplicationStarting(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
{
 //With the url providers we can change node urls.
 UrlProviderResolver.Current.InsertTypeBefore<DefaultUrlProvider, DomainUrlProvider>();

 //Remove the DefaultUrlProvider because our DomainUrlProvider should take care of all the urls.
 UrlProviderResolver.Current.RemoveType<DefaultUrlProvider>();

 //With the content finder we can match nodes to urls.
 ContentFinderResolver.Current.InsertTypeBefore<ContentFinderByNiceUrl, DomainContentFinder>();

 //Remove the ContentFinderByNiceUrl because our DomainContentFinder should find all the content.
 ContentFinderResolver.Current.RemoveType<ContentFinderByNiceUrl>();
}

The downside

Modifying URLs is easy, but currently there is a downside. Packages like the 301 URL Tracker and SEO Checker don't do a 301 redirect from the old URL to the new URL. So if you change the node name of a news item from the above example you need to add a 301 manually from the old URL.

It might be possible to automate this with some events, but I haven't tried that yet.

Thanks

I would like thank Stephan Gay for making all of this possible in Umbraco. In the last couple of months he's been a great help and I couldn't have done this without him. #h5yr
Umbraco Packaging with AppVeyor CI
— by Jeavon Leopold
I am constantly amazed at the tools available to support and nurture open source projects. GitHub is truly the hub of any open source project but there are many other supportive tools we can use to enhance what GitHub is already giving us. In this post I am going to introduce you to a few more of these wonderful tools and primarily AppVeyor in the context of authoring Umbraco packages.

[image: Appveyor -kb -logo] [image: Git Hub _Logo] [image: Logo][image: Nugetlogo][image: Npm -logo]

AppVeyor is essentially a Microsoft build server service hosted in the Azure cloud. Each build spins up an Azure VM and you can then execute whatever you want to in order to complete your build cycle and extract and deploy some artefacts (files you want post build).

As you might know I have authored a few Umbraco packages myself and contribute to many more. One of the challenges with supporting an open source project is packaging and releasing, it's fantastic when you can fix a quick bug or even better when someone else does it for you and sends a pull request, but then you have to find the time and remember all the steps needed to create a release and package it up.

[image: Large __5777397412]

So, enter the Umbraco build scripts. A few years ago I ended up at small session upstairs at CodeGarden where Matt Brailsford presented a short demo of his Umbraco Build Tasks. Using MSBuild, from a ton of XML and few batch files, he could create an Umbraco installable ZIP package! I have been using various versions of these scripts for all of the packages I work on ever since.

[image: Large __4318850016]

Having these build scripts makes packaging pretty quick, but what if we could have a build server execute the package build scripts? Well we can with AppVeyor and here's how.

The following walkthrough is an introduction and a starting point for most packages. The sample package is expected to contain a single DLL and a collection of JS, CSS & HTML files destined for the App_Plugins folder for your UI, this could be a typical Umbraco AngularJS property editor and a complimentary C# property value converter.

Prerequisite: you will need to have MSBuild v12 installed on your local machine, if you have VS2013 you will have it already, if not, you can download it from here.

1: First off we need to get MSBuild working and creating your package on your local machine, so get a copy of the BuildPackage folder from here and add it to the root of your project.

These build scripts are setup to do two things, firstly build your Grunt project, then build your C# project. If you have only one of these, you can remove the lines applicable to the other project and it will work just fine.

Package.build.xml

	Edit line 42 and set it to the folder of your C# project (it's "Test" in the sample).
<CoreProjectDir>$(RootDir)\Test</CoreProjectDir>

	Edit line 43 and set it to the folder containing your Grunt project (it's "Angular" in the sample)
<GruntProjectDir>$(RootDir)\Angular</GruntProjectDir>

	Edit line 72 and set to match your csproj filename (it's "Test.csproj" in the sample)
<MSBuildProjects="$(CoreProjectDir)\Test.csproj" />

	Edit line 81 and set to the output folder of your Grunt project ("dist" in the sample)
<GruntProjectFilesInclude="$(GruntProjectDir)\dist***" />

Build.bat

	Edit line 4 and set it to the path of your Grunt project (it's "Angular" in the sample)
cd ..\Angular\

	Edit line 8 and set it to the path of your sln file, this is used to restore any NuGet packages you have referenced before build begins.
Call Tools\nuget.exe restore ..\AppVeyorUmbracoPackage.sln

Edit the meta data in both Package.xml and Package.nuspec, such as your package name.

Now you should be able to run Test.bat and both a .zip and a .nupkg files containing your compiled files should be created in the /BuildPackage/Package/ folder.

[image: Packages]

By default the Test.bat batch file will create build100, you can change this in the file itself but these packages are only for debugging on your local machine.

2: Add appveyor.yml to the root of your project.

version format
version: 1.0.2.{build}

UMBRACO_PACKAGE_PRERELEASE_SUFFIX will only be used for Release builds
example UMBRACO_PACKAGE_PRERELEASE_SUFFIX=beta
install:
 - cmd: npm install -g grunt-cli
 - cmd: set UMBRACO_PACKAGE_PRERELEASE_SUFFIX=
 - cmd: set UMBRACO_PACKAGE_MIN_VERSION=7.2.0
 - cmd: cd BuildPackage
 - cmd: Build.bat

to disable automatic builds
build: off

artifacts:
 - path: BuildPackage\Package*.nupkg
 - path: BuildPackage\Package*.zip

You can do a lot of build configuration using the AppVeyor UI however you can do even more with appveyor.yml, and crucially, it allows us to maintain our package's version number in source control. When you have an appveyor.yml in the root of your project none of the settings you make in the AppVeyor UI will have any effect.

The version number of your package is at the top of appveyor.yml and importantly it is only here. This number is used to version the DLL file and also you can use it for banners within your Angular files, as well as being used in the package meta data.

Let's look at the options for a couple of those lines.

version: 1.0.2.{build}

This defines your package's version, and after every release you should update the version number so that CI builds are for the next version. The {build} is the build number and this is managed by AppVeyor.

By default your CI packages will be created in the format: MyPackageName.<major>.<minor>.<patch>-build<buildNumber>

 - cmd: set UMBRACO_PACKAGE_PRERELEASE_SUFFIX=beta

Quite often you want to release a prerelease (publish it to our.umbraco.org and Nuget), so you can add valid suffixes here, e.g. "beta", "beta1" or "alpha".

 - cmd: set UMBRACO_PACKAGE_MIN_VERSION=7.2.0

This is used in the Umbraco Package Meta data. I don't think it actually does anything but I believe it's supposed to prevent the package being installed on a version of Umbraco that is older than the one specified (that would be a good feature!). Ideally this would also populate the version of UmbracoCms.Core used as a dependency in the NuGet package (but I've not worked out how to do this yet).

3: Push your project to GitHub

4: Get an AppVeyor account and connect it to your GitHub, this is super simple to do just by following the wizard in AppVeyor. Once setup, you should see the "Latest build" tab and it's likely that your build is showing as queued. Time for some tea and biscuits!

[image: Large __2641793491]

[image: App Veyor Queue]

5: After some time, you will see the magic console appear and you will see the output from the build scripts live updating as it executes the various steps.

 [image: App Veyor Building]

6: Once the build has finished and was hopefully successful, you should see the "Artifacts" tab, here you can download both the Umbraco and NuGet packages and now you have package CI working.

[image: App Veyor Built]

7: AppVeyor will now automatically build from every commit you make on GitHub. You can always post links directly to your package files and know that your user will be able to install the very latest prerelease version. Example from my upcoming Crop Healer Package (shameless plug) can be seen here.

[image: Small _4294553880]

What about deployment and releases?

The way I have set up releases, to make a release you simply merge your master branch into a branch named "release". You then push that, AppVeyor will build it using the release version format and perform release deployment such as pushing the package automatically to NuGet (you will have to download the package from the artifacts tab and upload to our.umbraco.org). Once released, you immediately switch back to your "master" branch, increment the version number (e.g. v1.0.1 to v.1.0.2), commit and then carry on developing.

For deployment of build releases, I generally setup a MyGet feed for developers to be able to get the latest build using NuGet.

For deployment of full releases I have AppVeyor automatically push my package to NuGet and then manually download the .zip file from AppVeyor and upload it to our.umbraco.org (maybe one day we can automate this also).

To do this we need to configure the "deploy" section in appveyor.yml.

deploy:
 - provider: NuGet
 server: https://www.myget.org/F/myPackage/
 api_key:
 secure: AEncryptedKeyFromAppVeyor
 artifact: /.*\.nupkg/

 - provider: NuGet
 server:
 api_key:
 secure: AEncryptedKeyFromAppVeyor
 artifact: /.*\.nupkg/
 on:
 branch: release

This deploys every build to to MyGet from both the master and release branches but only builds from the release branch get pushed to NuGet.

Whoa, that was a lot of stuff!

Yes it was, and there is a lot more, such as the Grunt tasks for adding banners with the correct versions, unit tests, adding AppVeyor status badges, pull request builds etc., but I don't want this article to go on for eternity so I recommend you checkout the sample AppVeyorUmbraco package project and also the AppVeyor documentation.

If you are wanting to get AppVeyor builds and deployments working on an existing package or for something new, I will be more than happy to help get it going so don't hesitate to get in touch!

Also I would love to develop this process and the template AppVeyorUmbraco project further so please do get involved!

[image: Small _2891991931]

photo credit: Jameson42 & westpark & Kaustav Bhattacharya & quinn.anya & dhammza via photopin cc
Have beer - looking for workers
— by Steffen Muldbjerg
I better start out warning you, I'm afraid there will be no code examples in today's post. Because it's christmas, I think we all could use a little story - it comes from a thesis my lovely girlfriend just handed in, a couple of days ago - about the Umbraco Community.

I read her thesis to find something good to write about - she's an anthropologist, so it took quite some time. But my eyes stop when I read 'beer'.

So this post is going to be about beer and the Umbraco Community. For those of you who don't know what an anthropologist is - as my girlfriend puts it: It's the study of people and their culture.

 [image:]

Beer Economy

The story is collected by the antropologist Frederik Barth after living with the ancient African tribe - called the Fur-tribe. They lived a little more primitive than most of us do; they fetched water in a well, a few kilometers away; they milked the cow when in need of milk and their houses were more mud than bricks.

The Fur-tribe doesn't have a currency, but they can't either do everything by themselves. So when in need of help, they ask their family, friends and neighbors to come by and help out. You work together on getting the project done, as they have helped each other out for generations - but under one condition:

The host has to provide plenty of beer,
 enough for the whole working crew.

So you can call it a beer-for-labor economy. And when there is no more beer, the work comes to a halt - for who can work without beer?

We're a tribe

Our community is very much like the Fur-tribe, when you're in need of help - you call out to your family, friends - and in these world-wide-web times - neighbors, and you get help.

There is no currency that can pay for the friendliest community on the planet.

So for last words... CodeGarden better never run out of beer ;)
Extending the Umbraco backend using AngularJS and TypeScript
— by Bert Loedeman and Marcel Verweij
Introduction

Since the introduction of Umbraco 7, extending the backend is possible using AngularJS. At Seven Stars, we were very excited to see Per Ploug demoing Belle at CodeGarden 2013. Why?

At Seven Stars, we are coding a lot using AngularJS. In fact, we started developing with AngularJS since its early days. Starting last year, one of our customers began redeveloping the entire existing codebase (originally in Delphi/Silverlight) to a modern REST API and an AngularJS frontend. Since the original code base consists of several millions lines of code, we had some issues regarding the untyped character of the Javascript language. Fortunately, TypeScript was also born almost at the same time, which led to the decision to fully use AngularJS in cooperation with TypeScript to keep the new codebase maintainable.

Maybe you also began using TypeScript and AngularJS both at the same time. In that case, you probably faced the same difficulties we encountered: learning AngularJS is not easy, although doable with all kinds of examples available on the web. However, if you add TypeScript, you constantly have to translate those examples to their TypeScript alternatives. When you are learning both techniques at once, the learning curve can be very, very steep. Perhaps, if we would have had all of today's knowledge at the starting point, we would have gathered detailed knowledge of AngularJS first, after which we would have added TypeScript to the battle. On the other hand, where would the article you are currently reading be then ;) ?

What (not) to expect?

In this article, we are introducing a small Umbraco 7 backend extension package using AngularJS, fully written in TypeScript. The extension adds the popular FullCalendar JQuery plugin (http://fullcalendar.io/, AngularJS extension: https://github.com/angular-ui/ui-calendar) to Umbraco. We will not cover adding the extension itself to Umbraco (http://b.ldmn.nl/umbraco-custom-section), nor the server-side implementation for the required API's. Also, we will not explain every AngularJS concept, since it would result in a very long article. Instead, we will solely focus on the client-side TypeScript code. The main purpose of this article is to get you going with a lot of essential TypeScript samples for AngularJS. In order to provide some extra samples, we are adding an appointment maintenance dialog which interacts with our mocked server-side back-end. Should this article raise any questions about parts not covered, feel free to contact us! We are more than happy to help.

Some basics

We are developing in Visual Studio 2013, with the WebEssentials plugin installed. We are using the latest version of TypeScript (as of writing, v1.3). Something we have struggled on, is that Umbraco uses a somewhat dated version of AngularJS, namely the v1.1 range. Since almost all recent samples on the web cover the v1.2 range, there are some limitations when using those examples in Umbraco. The rumors are that v1.2 will be skipped, in favor of the newly released v1.3 branch (which is awesome).

For those of you wondering if TypeScript adds something to plain old Javascript: it certainly does. First of all, it provides you with type safety for both your own and third party libraries using interfaces and type description files (*.d.ts). Please note that both interfaces and type description files do not result in actual Javascript - type safety is lost when compiling. Secondly, TypeScript results in less verbose code while taking care for the necessary plumbing to create standards compliant Javascript understood by all recent browsers. The code is far more easy to refactor. A very clear advantage of TypeScript over Javascript is that you should worry a lot less about constructor patterns, private functions, closure and much more.

In practice, TypeScript does still compile into Javascript. However, sometimes closure mistakes might occur. In those cases, a profound Javascript knowledge still appears to be necessary. Our hope and experience until now is that the TypeScript team will continue to mitigate those situations in the future.

When adding AngularJS files to the Umbraco backend, you should always remember to add all JavaScript files (the result of saving TypeScript files) to the package.manifest file.

Module

To start adding your own AngularJS code, remember to add your custom module to the existing Umbraco module using the following statement:

module CalendarModule {
 'use strict';
 // declare 'CalendarModule' module
 angular.module('CalendarModule', ['ngResource']);

 var app: ng.IModule = angular.module('umbraco');
 app.requires.push('CalendarModule');
}
CalendarModule.ts

The rest of this article will use this module for registration. The technical layout for the package is as follows:

Controller

To start using AngularJS on your Umbraco back-end's edit.html file, you will need a controller first. This controller is registered using the ng-controller attribute. Since we will use a <form> element in our example as the root for our edit.html file, this is the place to be for the attribute.

<form novalidate name="calendarForm" ng-controller="CalendarModule.Controllers.CalendarController">

The controller is used to implement the FullCalendar plug-in on the page. The controller is used for interaction with the view and provide the correct data to be used by the view (model shaping). In our html file, we use the following element to show the calendar:

<div id="calendar" data-ui-calendar="uiCalendarConfig" data-ng-model="eventSources" data-calendar="fullCalendar"></div>

The ui-calendar AngularJS shim around the original JQuery plug-in cannot fully hide the fact that FullCalendar has not originally been built as an AngularJS plug-in. Therefore, instantiation is a bit hairy (have a look for yourself in the attached controller file).

module CalendarModule {
 'use strict';

 /**
 * @ngdoc controller
 * @name CalendarController
 * @function
 *
 * @description
 * The controller for agenda section tree edit page (or some other bla)
 */
 export class CalendarController {
 /**
 * The $inject array is used by AngularJS dependency injection to prevent name resolution problems when using minification.
 * It is important to have matching items with the actual constructor function (which is injected with those properties).
 */
 static $inject = ['$scope', '$routeParams', 'CalendarModule.Services.AppointmentsService', 'CalendarModule.Services.UserTypesService'];

 /**
 * Constructor
 */
 constructor(
 private $scope: ICalendarControllerScope,
 $routeParams: any,
 private appointmentsService: CalendarModule.Services.AppointmentsService,
 private userTypesService: CalendarModule.Services.UserTypesService
) {

 $scope.content = { tabs: [{ id: 1, label: 'Agenda' }] };
 $scope.editMode = () => $routeParams.create === 'true';

 var userTypePromise = userTypesService.getUserType($routeParams.id);
 userTypePromise.then((result) => $scope.userType = result);

 this.doFullCalendar($scope, appointmentsService, userTypePromise);

 // a timing conflict occurs between Umbraco, Bootstrap and AngularJS.
 this.ensureRendering('calendar', 0);
 }

 /**
 * The actual configuration and instantiation of the FullCalendar plug-in.
 */
 private doFullCalendar($scope: any, calendarService: CalendarModule.Services.AppointmentsService, userTypePromise: ng.IPromise<IUserType>): void {
 // set FullCalendar events. it is possible to use a callback, which is the only way to go when using AngularJS promises (async behavior).
 // we use a calendar per Umbraco user type, therefore we first wait for our user type promise to resolve, after which we get the actual
 // appointments (and wait for that promise to resolve as well).
 $scope.events = (start: Moment, end: Moment, timezone, callback) => {
 userTypePromise.then((userType) => {
 this.appointmentsService.getAppointments(userType.alias, start, end).then(
 (result: IEventData): any => { callback(result.events); }, // success
 (): any => { callback([]); }); // error
 });
 };

 $scope.eventSources = [$scope.events];

 // event click
 $scope.onEventClick = (event, allDay, jsEvent, view) => {
 $scope.activeAppointment = event;
 $scope.showAppointmentMaintenanceDialog = true;
 };

 $scope.saveAppointment = (appointment: IEvent) => {
 return this.saveAppointment(appointment);
 };

 // Change View
 $scope.changeView = (view, calendar) => { calendar.fullCalendar('changeView', view); };

 var height: number = Math.max(600, window.innerHeight - 255);

 /* set FullCalendar config */
 $scope.uiCalendarConfig = {
 lang: 'en', // Translate calendar in your language
 height: height,
 editable: true,
 cache: false,
 header: {
 left: 'prev,next today',
 center: 'title',
 right: 'month,agendaWeek,agendaDay,list'
 },
 firstDay: 0,
 eventClick: $scope.onEventClick
 };
 }

 private saveAppointment(appointment: IEvent): ng.IPromise<IEvent> {
 return this.appointmentsService.saveAppointment(appointment);
 }

 private renderCalendar(calendar: any): void {
 if (calendar) {
 calendar.fullCalendar('render');
 }
 }

 // ensure rendering of the fullCalendar control (unless it takes more than 2500ms)
 private ensureRendering(id: any, retryCount: any): void {
 if (id) {
 if ($('#' + id + ' .fc-widget-header').length === 0) {
 if (retryCount < 200) {
 window.setTimeout((): any => {
 // console.log(retryCount);
 this.renderCalendar($('#' + id));
 this.ensureRendering(id, ++retryCount);
 }, 50);
 }
 }
 }
 }
 }
 angular.module('CalendarModule').controller('CalendarModule.Controllers.CalendarController', CalendarController);
}
CalendarController.ts

In fact, the controller has to main concerns to deal with:

	Providing the correct configuration for the ui-calender directive

	Loading (and possibly shaping) data from services

The ui-calendar configuration is taken care of by specifying $scope.uiCalendarConfig on the data-ui-calendar HTML attribute. The data-ui-calendar attribute tells AngularJS to use the uiCalendar directive. The uiCalendar directive itself is 'out of scope' for this article. It is important to know the ui-calendar directive searches the parent scope (thus, the controller scope) for additional information it needs. For example, think about the events array and event functions. Second-most important to know is that events must be added instantly, otherwise, they will never appear on the calendar. Since AngularJS works with asynchronous data communication (using promises), the only way to have events being loaded is using FullCalendar's event function which expects a callback to notify data loading has been completed.

Service

We want events to appear on the calendar. Of course, technically we could stick with the controller and directly communicate with the appropriate API. Since we are trying to use a proper front-end architecture, business logic does not belong in a controller, but in a service. In this example, we use two services:

	The UserTypesService is used to retrieve Umbraco user types;

	The AppointmentsService is used to retrieve appointments.

This article only covers the appointments service.

///// <reference path='../Shared/Contracts/IEventDTO.ts' />
///// <reference path='../Shared/Core.ts' />

module CalendarModule {
 'use strict';

 export interface IEventData {
 events: IEvent[];
 }

 export interface IEvent {
 id: number;
 start: Date;
 end: Date;
 title: string;
 location: string;
 }

 export module Services {
 /**
 * @ngdoc service
 * @name AppointmentsService
 * @function
 *
 * @description
 * Get all calendar events
 */
 export class AppointmentsService {
 private $location: ng.ILocationService;
 private $filter: ng.IFilterService;
 private $q: ng.IQService;
 private appointmentsResource: Resources.AppointmentsResource;

 constructor(
 $location: ng.ILocationService,
 $filter: ng.IFilterService,
 $q: ng.IQService,
 appointmentsResource: Resources.AppointmentsResource) {
 this.$location = $location;
 this.$filter = $filter;
 this.$q = $q;
 this.appointmentsResource = appointmentsResource;
 }

 public getAppointments(userType?: string, start?: Moment, end?: Moment): ng.IPromise<IEventData> {
 var defer: ng.IDeferred<CalendarModule.IEventData> = this.$q.defer<IEventData>();

 this.appointmentsResource.get(userType, start, end).then((response: Contracts.IAppointmentDTO[]) => {
 var eventData: IEventData = this.convertResponseToEventData(response);
 defer.resolve(eventData);
 });

 return defer.promise;
 }

 public saveAppointment(appointment: IEvent): ng.IPromise<IEvent> {
 var defer: ng.IDeferred<CalendarModule.IEvent> = this.$q.defer<IEvent>();

 var add = !angular.isDefined(appointment.id) || appointment.id <= 0;

 var eventDto = this.convertEventToEventDto(appointment);

 if (add) {
 this.appointmentsResource.post(eventDto).then((response: Contracts.IAppointmentDTO) => {
 var event: IEvent = this.convertEventDtoToEvent(response);
 defer.resolve(event);
 });
 } else {
 this.appointmentsResource.put(eventDto).then((response: Contracts.IAppointmentDTO) => {
 var event: IEvent = this.convertEventDtoToEvent(response);
 defer.resolve(event);
 });
 }
 return defer.promise;
 }

 private convertResponseToEventData(response: Contracts.IAppointmentDTO[]): IEventData {
 var eventData: IEventData = { events: [] };

 for (var i: number = 0; i < response.length; i++) {
 eventData.events.push(this.convertEventDtoToEvent(response[i]));
 }

 return eventData;
 }

 convertEventDtoToEvent(from: Contracts.IAppointmentDTO): IEvent {
 var to: IEvent = {
 id: from.id,
 start: from.start,
 end: from.end,
 title: from.title,
 location: '' // not yet in data transfer object
 };
 return to;
 }

 convertEventToEventDto(from: IEvent): Contracts.IAppointmentDTO {
 var to: Contracts.IAppointmentDTO = {
 id: from.id,
 start: from.start,
 end: from.end,
 title: from.title//,
 //location: '' // not yet in data transfer object
 };
 return to;
 }

 getApplicationRoot(): string {
 var applicationRoot: string = this.$location.protocol() + '://' /* + this.$location.port() + '//' */ +
 this.$location.host() + '/';
 return applicationRoot;
 }

 }

 AppointmentsService.$inject = ['$location', '$filter', '$q', 'CalendarModule.Resources.AppointmentsResource'];

 angular.module('CalendarModule').service('CalendarModule.Services.AppointmentsService', AppointmentsService);
 }
}
AppointmentsService.ts

Please note that, just like the controller, the service also uses the $inject property to specify injection behavior. Every AngularJS controller or service should provide the $inject propertyto be able to support the AngularJS Dependency Injection system, even when minifying the code. The getAppointments function in the service provides us with the appointments via a (typed) promise. The saveAppointments function saves an appointment back to our API.

Resource

Most examples covering data retrieval use the AngularJS $resource service from within the service. We used to do this as well, but found out that mocking the $resource service for testing causes real headaches. For better testability, we use a resource wrapper (AppointmentsResource) which uses the $resource service. Following this pattern, we are better suited to fully test the service itself.

'use strict';

module CalendarModule {
 export module Resources {
 interface IExecuteResource {
 execute?: (...params: any[]) => { $promise: ng.IPromise<any> };
 }

 export interface IAppointmentsResource {
 get?: (userType?: string, start?: Moment, end?: Moment) => ng.IPromise<Contracts.IAppointmentDTO[]>;
 post?: (event: Contracts.IAppointmentDTO) => ng.IPromise<Contracts.IAppointmentDTO>;
 }

 export class AppointmentsResource implements IAppointmentsResource {
 private apiHost: string;

 constructor(
 private $q: ng.IQService,
 private $location: ng.ILocationService,
 private $resource: ng.resource.IResourceService) {
 }

 public get(userType?: string, start?: Moment, end?: Moment): ng.IPromise<Contracts.IAppointmentDTO[]> {
 var defer: ng.IDeferred<Contracts.IAppointmentDTO[]> = this.$q.defer<Contracts.IAppointmentDTO[]>();

 var resource: IExecuteResource = this.$resource(
 this.getApplicationRoot() + 'api/appointments' +
 (angular.isDefined(userType) ? '/' + userType : '') +
 (angular.isDefined(start) ? '?start=' + start.format() : '') +
 (angular.isDefined(start) && angular.isDefined(end) ? '&end=' + end.format() : ''),
 {
 },
 {
 'execute': { method: 'GET', isArray: true }
 });

 resource.execute({}, (response: Contracts.IAppointmentDTO[]): any => {
 defer.resolve(response);
 });

 return defer.promise;
 }

 public post(event: Contracts.IAppointmentDTO): ng.IPromise<Contracts.IAppointmentDTO> {
 var defer: ng.IDeferred<Contracts.IAppointmentDTO> = this.$q.defer<Contracts.IAppointmentDTO>();
 var resource: IExecuteResource = this.$resource(this.getApplicationRoot() + 'api/appointments',
 {

 },
 {
 execute: { method: 'POST' }
 });

 resource.execute({}, event, (response: Contracts.IAppointmentDTO): any => {
 defer.resolve(response);
 });
 return defer.promise;

 }

 public put(event: Contracts.IAppointmentDTO): ng.IPromise<Contracts.IAppointmentDTO> {
 var defer: ng.IDeferred<Contracts.IAppointmentDTO> = this.$q.defer<Contracts.IAppointmentDTO>();
 var resource: IExecuteResource = this.$resource(this.getApplicationRoot() + 'api/appointments/:id',
 {
 id: '@id'
 },
 {
 execute: { method: 'PUT' }
 });

 resource.execute({ id: event.id }, event, (response: Contracts.IAppointmentDTO): any => {
 defer.resolve(response);
 });
 return defer.promise;

 }

 private getApplicationRoot(): string {
 var applicationRoot: string = this.$location.protocol() + '://' /* + this.$location.port() + '//' */ +
 this.$location.host() + '/';
 return applicationRoot;
 }
 }

 AppointmentsResource.$inject = ['$q', '$location', '$resource'];

 angular.module('CalendarModule').service('CalendarModule.Resources.AppointmentsResource', AppointmentsResource);
 }
}
AppointmentsResource.ts

Directive

Now that the calendar is shown on the back-end page and filled with events, it is time to move on. When clicking an event, we would like to have a maintenance dialog for the event. For this dialog, we implement a directive: the AppointmentMaintenanceDialogDirective.

module CalendarModule {
 'use strict';

 interface IAppointmentMaintenanceDialogScope extends ng.IScope {
 show: boolean;
 currentPage: number;
 appointment: any;

 // private functions
 moveNext: () => void;
 movePrevious: () => void;
 navigateTo: (page: number) => void;
 cancel: () => void;
 save: () => void;

 // external functions
 saveCallback: () => any;
 }

 /**
 * Controller for displaying the appointment maintenance screen.
 */
 class AppointmentMaintenanceDialogDirectiveController {

 /**
 * Reference to the appointment maintenance dialog element.
 */
 maintenanceDialogElement: ng.IAugmentedJQuery;

 /**
 * Constructor wires up scope events to private controller methods and initialize scope variables.
 */
 constructor(
 private $scope: IAppointmentMaintenanceDialogScope,
 private $routeParams: any
) {
 $scope.currentPage = 1;

 $scope.moveNext = () => this.moveNext();
 $scope.movePrevious = () => this.movePrevious();
 $scope.navigateTo = (page: number) => this.navigateTo(page);
 $scope.cancel = () => this.cancel();
 $scope.save = () => this.save();
 }

 /**
 * move to next page.
 */
 private moveNext(): void {
 this.$scope.currentPage++;
 }

 /**
 * move to previous page.
 */
 private movePrevious(): void {
 this.$scope.currentPage--;
 }

 /**
 * navigate directly to a specific page.
 */
 private navigateTo(pageNumber: number): void {
 this.$scope.currentPage = pageNumber;
 }

 /**
 * do not display the tour again during this session.
 */
 private cancel(): void {
 this.$scope.show = false;
 //this.maintenanceDialogElement.hide();
 }

 private save(): void {
 var result = this.$scope.saveCallback()(this.$scope.appointment);

 this.$scope.show = false;
 this.$scope.navigateTo = (page: number) => this.navigateTo(1);

 }
 }

 /**
 * Angular directive definition for the appointment maintenance dialog.
 */
 export class AppointmentMaintenanceDialogDirective implements ng.IDirective {
 public templateUrl: string;
 public replace: boolean;
 public controller: any;
 public scope: any = {
 show: '=',
 appointment: '=',
 saveCallback: '&'
 };
 public link: ($scope: IAppointmentMaintenanceDialogScope, element: ng.IAugmentedJQuery, attributes: ng.IAttributes, controller: AppointmentMaintenanceDialogDirectiveController) => void;

 public static $inject: any[] = [() => { return new AppointmentMaintenanceDialogDirective(); }];

 constructor() {
 this.templateUrl = '/App_Plugins/CalendarSection/Backoffice/AngularJS/Templates/appointment-maintenance-dialog.html';
 this.controller = ['$scope', '$routeParams', AppointmentMaintenanceDialogDirectiveController];
 this.replace = true;
 this.link = ($scope: IAppointmentMaintenanceDialogScope, element: ng.IAugmentedJQuery, attributes: ng.IAttributes, controller: AppointmentMaintenanceDialogDirectiveController) => {
 this.linkFn($scope, element, attributes, controller);
 };
 }

 private linkFn($scope: IAppointmentMaintenanceDialogScope, element: ng.IAugmentedJQuery, attributes: ng.IAttributes, controller: AppointmentMaintenanceDialogDirectiveController): void {
 this.initElement($scope, element);
 }

 private initElement($scope: IAppointmentMaintenanceDialogScope, element: ng.IAugmentedJQuery) {
 $scope.$watch('show', (newValue: boolean, oldValue: boolean) => {
 if (angular.isDefined(newValue) && newValue !== null && newValue) {
 element.show();
 } else {
 element.hide();
 }
 });
 }
 }

 // NOTE Do not start directive name with an uppercase character! Won't load the thing.
 angular.module('CalendarModule').directive('appointmentMaintenanceDialog', AppointmentMaintenanceDialogDirective.$inject);
}
AppointmentMaintenanceDialogDirective.ts

A directive is mostly accompanied by a template file, specifying the html the directive outputs. When a directive is loaded, the link function is always called. In most examples, you therefore see all logic go into this link function. However, this is very bad for testing purposes. Luckily, AngularJS provides us with the opportunity to use a directive controller. To get the most out of your testing experience, logic should be in the directive controller, and only DOM interaction (JQuery, events) should stay in the directive itself.

As you probably notice, the directive has its own scope, different than the earlier controller's scope. In AngularJS, this is called an isolated scope (Dan Wahlin has written an excellent series on isolated scope: http://b.ldmn.nl/isolated-scope-wahlin). If you look closely, you can see that the show and appointment properties are marked with an '=', meaning they are being synced between both scopes. The saveCallback function is marked with an '&', meaning the directive (controller) can call this function when it is specified on the directive. Isolated scope is worth an article on its own, but notice how the saveCallback function is used differently from what you would expect. In fact, the saveCallback function is a function reference. You must get the actual function by calling the reference. After this, you can use the function on the parent scope. Counter-intuitive, but it works fine when you know the drill ;) .

To wrap up the dialog process: when the saveCallback function is called (look for it in the directive template), the CalendarController's saveAppointment function is called. This function saves the appointment using the CalendarService described earlier. The saveCallback function waits for the parent's function promise to resolve successfully, after which the dialog itself is hidden.

Wrapping up

We hope we have got you some handy examples about using TypeScript with AngularJS, especially in the context of extending the Umbraco back-end. We love to get feedback. You can react below or send us an email. Should you have an opinion on how to get even better TypeScript code, we would love to learn from you as well ;) .

Maybe, for this example the amount of architecture seems to be a little 'over the top'. At Seven Stars, we believe in beautiful quality code, even in small code bases. High quality code is testable (and tested). This enables us to be fast and predictable when delivering software for our clients. In our next article, we therefore cover some basics on how to test this back-end extension using Jasmine unit tests.

For those of you curious about all source code for this package, including all services, resources, interfaces and the manifest: here is the zip.
Testing Umbraco backend extensions with Jasmine
— by Bert Loedeman and Marcel Verweij
Introduction

This article is the second part in a series of two articles about extending the Umbraco 7 backend. Our previous article covered some vital aspects about using AngularJS in combination with TypeScript. The current article introduces testing the client-side application using Jasmine unit tests. We assume some basic AngularJS knowledge, there is no room to explain basic AngularJS concepts. Of course, we are more than happy to answer (almost) all of your questions.

Tooling: Visual Studio, Jasmine and Chutzpah

At Seven Stars HQ, we are used to have Visual Studio as our IDE. Besides developing front-end code, we also write lots of .NET code. Although Visual Studio might not be the most efficient IDE to use for client-side development, being accustomed to an IDE and assisting development tools does also count for us. Combined with some extensions, the client-side testing experience using Visual Studio is very impressive.

We are using Jasmine (version 2.0) as our unit test framework for client-side development. Jasmine (http://b.ldmn.nl/jasmine-20) is a very powerful behavior-driven unit test framework for testing JavaScript code. Although we will cover some basics about Jasmine, we suggest you to follow the link to the official documentation to discover all the possibilities Jasmine has to offer.

Visual Studio does not offer 'out-of-the-box' support for Jasmine. Therefore, we use a tool called Chutzpah (http://b.ldmn.nl/chutzpah-20). You enable Chutzpah by installing two small Visual Studio extensions.

 [image: Chutzpah extensions]

 Chutzpah extensions

After installation, you can use the Visual Studio Test Explorer or right-click any test file to fire your tests or get code coverage results for your tests.
Currently, we are still writing most Jasmine unit tests in plain old JavaScript. It would be very nice to have them written in TypeScript. At the moment, the added complexity (learning curve, since almost no examples exist using Jasmine and TypeScript) and the fact that test code is no production code has until now resulted in our decision not to focus much on TypeScript for Jasmine unit tests.

In this article, we will cover some Jasmine basics first. After that, we combine those basics with some Jasmine basics for testing an AngularJS application. Since the proof of the pudding is in the eating, we finally show a Jasmine test suite testing the AppointmentsService class from our previous article.

Testing with Jasmine

Suites (describe, beforeEach, afterEach)

To start unit testing with Jasmine, you always start creating a suite. A suite is declared by the describe function, which has two parameters: a name and a body function. The suite combines tests which belong together.

A suite contains a set of test specifications, but is primarily responsible for test environment setup (using the beforeEach function) and teardown (using the afterEach function). As their function names imply, those functions are respectively called before and after each test specification. The beforeEach function is the right place to mock the boundaries of your system under test.
For better granularity, you can nest suites to compose trees of tests, for instance grouped by methods under test. Setup and teardown is performed in order, which makes it very convenient to prepare and clean up the test environment on different levels with their own concerns.

Test specifications (it)

When testing code, the best practice is to test all public functions for your TypeScript classes. Of course, it is possible to test private functions as well, but it should not be necessary, because public functions should call all private functions. If reaching 100% code coverage on your file is not possible when testing all possible code paths, you probably developed some unused code.
A test specification is declared by the it function, looking pretty much the same as the describe function with a name and body function parameter. Inside a test specification, expectations are crucial to verify the code behaves like you expect it to.

At Seven Stars, we like to keep our test specifications as predictable as possible. Therefore, we always follow the Arrange (set up some test prerequisites you cannot setup in the suite's beforeEach function), Act (the actual call to the system under test), Assert (verify expactations) structure inside each test specification.

Expectations

Roughly divided, there are two types of expectations:

	expectations on the results from the system under test

	expectations on the behavior of the system under test

It is quite easy to assert results using the expect function. Jasmine provides us with lots of asserting function calls like toBe, toEqual and toBeNull.
The real power of Jasmine, however, lies in testing the behavior of our system under test. For instance, if your service calls a resource, you probably like to assert the resource is called exactly one time and using the expected parameters. Jasmine provides us with spies to assert behavior. Spies are described using the spyOn function (when spying on existing objects/functions) or the createSpy function (to create a new spy, especially handy when mocking system boundaries).

Testing an AngularJS application

System under test

By default, Jasmine provides us with a lot of test supporting functions. In order to get a running test, we have to reference the system under test. This is taken care of by /// <reference> comments, which Jasmine uses to load test dependencies.

The system under test is the Javascript file you are going to test. When using a complex environment like AngularJS, only referencing the system under test will not suffice. You should also reference every component the system under test depends on (which cannot be mocked). Sometimes, you could reach success by just referencing AngularJS and the ngMock module (more about that one below). If you use extension libraries to make life easier (we often use libraries like underscore.js and moment.js), you have to reference those as well.

AngularJS dependency injection

AngularJS heavily depends on dependency injection and asynchronous function calls (using promises). Therefore, you would expect testing AngularJS code to be difficult. Fortunately, it is not, because AngularJS is built with testing in mind. AngularJS provides the ngMock module (https://docs.angularjs.org/api/ngMock), which provides support to inject and mock Angular services into your Jasmine tests. A lot of AngularJS's core modules are covered by default. For example, think of the root scope ($rootScope) and the queuing service ($q).

If you need AngularJS dependency injection for your system under test, you have to use the inject function (provided by the ngMock module) in the beforeEach function. The beforeEach function only takes one parameter, the body function. The inject function also takes a body function and provides a chaining mechanism to ensure proper test operation. The inject body function can take any number of parameters. The real power of the inject function is that those parameters are injected with AngularJS module mocks (if recognized by ngMock). Thus, specifying the $rootScope parameter actually gives access to a working AngularJS $rootScope object.

Of course, you need the injected objects (and the other mocks you create in beforeEach) in your test specifications. You can reach this goal in two ways: either by specifying global variables in your describe function or placing variables in the 'this' scope. We prefer the latter, because this way there is no need to specify variables and assigning them later on. Of course, this is a matter of taste.

Testing

Testing AngularJS applications is pretty straightforward. There are a few tricky parts in testing, though:

Testing promises requires some extra mocking skills. Luckily, the ngMock module takes care of AngularJS's asynchronous nature. When testing, it is important to keep in mind that ngMock does not always do all its magic by itself: we found out that it is necessary to understand AngularJS heavily uses digestion cycles. In order to get your promises to resolve, you have to kick off the digestion process. This is done by the following command: $rootScope.$apply().

Another thing to keep in mind is that Jasmine is not aware of asynchronicity: when the test reaches the last line of the test specification, success is celebrated, although your promise is not reached yet (and so aren't the expectations inside). Luckily, Jasmine provides us with a done callback function which can be used to notify Jasmine when testing is done. When using the done callback function, Jasmine will wait until the function is called (or the test times out).

Testing the Umbraco backend plugin

Setup

Alright, are you feeling ready for the real deal? We are almost there, after we cover some setup basics first.

We consider separating test and production code to be crucial. Therefore, our Jasmine unit tests are in a separate (web) project. This project should include the Jasmine test framework. You can download the source code from the Jasmine website, or use the 'Jasmine Test Framework' NuGet package. When testing the DOM interaction (preferably in directives), you probably face test exceptions because JQuery is not recognized by default. Referencing JQuery and the Jasmine-JQuery (http://b.ldmn.nl/jasmine-jq) libraries helps.

Finally, you need a Chutzpah.json file when using Chutzpah inside Visual Studio. This file should be somewhere in the folder tree between the tests and the project's root (suggestion: place one in root, provide differentiation in subfolders if needed). Here is an example of the Chutzpah.json file

{
 "Framework": "jasmine",

 "TestFileTimeout": 10000,

 "TestHarnessLocationMode": "TestFileAdjacent",

 "TestHarnessDirectory": "Tests/",

 "TypeScriptCodeGenTarget" : "ES5",

 "RootReferencePathMode":"DriveRoot",

 "CodeCoverageIncludes": ["*.js"],

 "CodeCoverageExcludes": ["*\\<Your Jasmine Test Project Name>*"]
}
Chutzpah.json

Testing AppointmentsService.ts

For this article, showing off a fully tested solution would be a bridge too far. Below you can see the test suite for the appointments service. Let's walk through some particularities:

	Jasmine (and the browser) is a JavaScript test framework. We are not testing our TypeScript class, but the resulting Javascript file. Notice that we therefore include a reference to the Javascript file.

	Notice the arrange, act, assert structure in each test.

	It is not very easy to equal objects which are no real memory references. Instead of walking all properties by hand, we use a so-called custom matcher, toEqualData. This custom matcher is in the utils.js file and is registered in the Jasmine test framework in beforeEach.

	Notice dependency injection is used in beforeEach for $rootScope, $location, $filter and $q.

	Since we are testing the appointments service, we mock the boundaries of our system under test. One of those boundaries is the appointmentsResource. As you can see, we create all public resource functions using Jasmine spies, which call a fake method returning data like the actual resource would do normally. This mocking structure is a typical example of mocking calls which result in promises.

	Inside the overall test suite (the describe function named 'appointmentsService') we use nested test suites for each public function of the appointments service. This results in a clearly organized test suite.

	Notice that for the AppointmentsService.getAppointments function both the result (using toEqualData) and the service behavior is asserted. Regarding asserting the behavior: appointmentsResource.get is one of the spies we created. A spy offers several tracking capabilities, including parameter tracking and tracking how many times the spy has been called.

	The call to this.$rootScope.$apply makes sure the promise is resolved by AngularJS, causing the then() callback function to be called. In order to be able to test the results of the service function call, expectations have to be inside the then() callback function.

	Since all tests are dealing with asynchronous behavior, all tests do specify and use the done callback function.

	The AppointmentsService.saveAppointment function has some business logic inside to either create or update an appointment based on the id value being more than zero (in that case, we are dealing with an existing appointment). Since we are using a REST API which uses POST for creation en PUT for updates, we have to assert if both routes are covered by our function. This is why four (!) tests exist to ensure proper test coverage is reached.

Here is the appointments-service-specs.js test suite file:

/// <reference path="../../../Scripts/typings/jasmine/jasmine.d.ts" />
/// <reference path="../../../Scripts/utils.js" />

/// <reference path="../../../scripts/angular/1.1.5/angular.min.js" />
/// <reference path="../../../Scripts/angular/1.1.5/angular-mocks.js" />
/// <reference path="../../../Scripts/underscore.min.js" />

/// <reference path="../../../../GerGemEmmeloord.Web.UI/App_Plugins/CalendarSection/Backoffice/AngularJS/Services/AppointmentsService.js" />

'use strict';

describe('appointmentsService', function () {

 beforeEach(inject(function ($rootScope, $location, $filter, $q) {
 utils.registerCustomMatchers(this);
 var that = this;

 this.$rootScope = $rootScope;
 this.$location = $location;
 this.$filter = $filter;
 this.$q = $q;

 this.dateMock = new Date();
 this.appointmentsMock = [{ id: 1, start: this.dateMock, end: this.dateMock, title: 'Test Appointment' }];

 this.appointmentsResourceMockMock = {
 get: jasmine.createSpy('get').and.callFake(function (userType, start, end) {
 return { then: function (callback) { return callback(that.appointmentsMock); } };
 }),
 post: jasmine.createSpy('post').and.callFake(function (event) {
 return { then: function (callback) { return callback(event); } };
 }),
 put: jasmine.createSpy('put').and.callFake(function (event) {
 return { then: function (callback) { return callback(event); } };
 })
 };

 this.appointmentsService = new CalendarModule.Services.AppointmentsService(this.$location, this.$filter, this.$q, this.appointmentsResourceMock);
 }));

 describe('getAppointments', function () {
 it('Should get the expected items', function (done) {
 // arrange
 var expected = { events: [{ id: 1, start: this.dateMock, end: this.dateMock, title: 'Test Appointment', location: '' }] };

 // act
 this.appointmentsService.getAppointments('test').then(function (response) {
 // assert
 expect(response).toEqualData(expected);
 done();
 });

 this.$rootScope.$apply();
 });

 it('Should call appointmentsResourceMock.get once', function (done) {
 // arrange
 var that = this;

 // act
 this.appointmentsService.getAppointments('test').then(function (response) {
 // assert
 expect(that.appointmentsResourceMock.get).toHaveBeenCalledWith('test', undefined, undefined);
 expect(that.appointmentsResourceMock.get.calls.count()).toBe(1);
 done();
 });

 this.$rootScope.$apply();
 });
 });

 describe('saveAppointments', function() {
 it('Should save a new appointment (no id) and return the saved appointment', function (done) {
 // arrange
 var saved = { id: undefined, start: this.dateMock, end: this.dateMock, title: 'Test Appointment', location: '' };

 // act
 this.appointmentsService.saveAppointment(saved).then(function (response) {
 // assert
 expect(response).toEqualData(saved);
 done();
 });

 this.$rootScope.$apply();
 });

 it('Should save a new appointment (no id) using appointmentsResourceMock.post (once)', function (done) {
 // arrange
 var that = this;
 var saved = { id: undefined, start: this.dateMock, end: this.dateMock, title: 'Test Appointment', location: '' };

 // act
 this.appointmentsService.saveAppointment(saved).then(function (response) {
 // assert
 expect(that.appointmentsResourceMock.post).toHaveBeenCalled();
 expect(that.appointmentsResourceMock.post.calls.count()).toBe(1);
 done();
 });

 this.$rootScope.$apply();
 });

 it('Should save an existing appointment (id > 0) and return the saved appointment', function (done) {
 // arrange
 var saved = { id: 1, start: this.dateMock, end: this.dateMock, title: 'Test Appointment', location: '' };

 // act
 this.appointmentsService.saveAppointment(saved).then(function (response) {
 // assert
 expect(response).toEqualData(saved);
 done();
 });

 this.$rootScope.$apply();
 });

 it('Should save an existing appointment (id > 0) using appointmentsResourceMock.put (once)', function (done) {
 // arrange
 var that = this;
 var saved = { id: 1, start: this.dateMock, end: this.dateMock, title: 'Test Appointment', location: '' };

 // act
 this.appointmentsService.saveAppointment(saved).then(function (response) {
 // assert
 expect(that.appointmentsResourceMock.put).toHaveBeenCalled();
 expect(that.appointmentsResourceMock.put.calls.count()).toBe(1);
 done();
 });

 this.$rootScope.$apply();
 });
 });
});
appointments-service-specs.js

Considerations

Testing AngularJS code using Jasmine is relatively easy and fun. However, there are some tricky parts you should know about:

	Testing DOM integration is doable, but difficult. You should never mix business logic and DOM logic (for instance, JQuery) in controllers, services, etc. This quickly makes testing an impossible operation. If you look at the CalendarController.ts file showed in our previous article, you probably see the bad thing happen ;) ... Instead, move DOM integration you cannot mitigate entirely into a directive. This takes care of as much clean, testable classes as possible. Please notice that you can even split a directive into the directive itself and an accompanying directive controller.

	When possible, try not to use $scope inside controllers. Testing $scope is a bit hairy. Instead, try to use the 'controller as' syntax. One caveat: the current version of Umbraco 7 uses AngularJS v1.1.x, which means the 'controller as' syntax is not in there (it has seen birth since AngularJS v1.2.x). Luckily, the Umbraco core team is considering to upgrade AngularJS someday soon, so stay informed ;) .

Wrapping up

We hope we have got you excited about AngularJS and Jasmine unit testing. As said before, we love to get feedback. You can react below or send us an email. Should you have an opinion on how to get even better unit test code, we would love to learn from you as well ;) ! Happy coding!
Redirect rules
— by Niels Ellegaard
As a programmer you sometimes gets thrown into a subject you don't know anything about and you have to start from rock bottom. Redirect rules was that kind of subject to me. But you get to learn new things, which is awesome!
I want to share the things I learned and hope you can use it.

I had only seen the most basic example rules and I found it hard to find any good documentation on how to make more advanced rules. What the different attributes and options did and how they worked together. But after a lot of trial and error I started to understand how most of it fit together.

As I finished my work case I looked back and realized how I could make some fairly generic rules so I got an idea.

I sought to make a set of generic redirect rules that most people could use without having to know the deep dark secrets of redirects rules.
The end result was a NuGet Package: RedirectRules

If anyone is interested in a more thorough guide on the anatomy of a rule and the different options and so on, write a comment and I might make a blog post about it, but for now I will stick with just this package.

Nuget Package

What does it do?

Well to put it short, it insures that your URLs are neat, clean and user friendly.
It bundles together the most common redirect rules I have found and some extra goodies, I'll get into details later.

To put it super simple it makes this ugly URL:
http://mysite.com/SamplePage.aspx/

Into this clean URL:
http://www.mysite.com/samplepage

Both URLs and variations of them, would in most cases give you the same page, especially in Umbraco.
Your webpage can actually be accessed by a number of different URLs. More than you might be aware of.
I believe that it at least helps a little on SEO, as it removes some unwanted duplicate content issues.

The package implements a bunch of common redirect rules:

	Remove trailing slash

	Lower case URL.

	Remove default.aspx

	Trim .aspx

	Enforce www prefix on toplevel domains

	Enforce no www prefix on sublevel domains

And some extra goodies that's rarely seen elsewhere:

	No 301 chaining

	URL whitelisting

	No browser caching on 301

For any redirect rules to work your server needs to have IIS URL Rewrite 2.0 installed. You can download it here.
 As of IIS 8 it comes preinstalled.

How does it work?

The rules are split up in a few sections, I'll explain what they do and the structure behind it.

Whitelist

<rule name="WhiteList" stopProcessing="true">
	<match url="(.*)" />
	<conditions logicalGrouping="MatchAny" trackAllCaptures="false">
		<add input="{URL}" pattern="^.*/(base|webshop|umbraco|umbraco_client|client|install|api|bundles)/" ignoreCase="true" />
		<add input="{HTTP_HOST}" pattern=".*localhost.*" ignoreCase="true" />
	</conditions>
	<action type="None" />
</rule>

If any of the conditions in this rule are met, we stop the processing of rules and do nothing else. This is intended for URLs we don't want to redirect. Umbraco, APIs, bundles and other situations like these. You can add more conditions if required.

Rewrite rules

<rule name="SEO - Remove trailing slash" stopProcessing="false">
	<match url="^_*(.*)/+$" />
	<conditions>
		<add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />
		<add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />
	</conditions>
	<action type="Rewrite" url="_{R:1}" />
</rule>
<rule name="SEO - ToLower" stopProcessing="false">
	<match url="^_*(.*)" ignoreCase="false" />
	<conditions logicalGrouping="MatchAll" trackAllCaptures="false">
		<add input="{R:1}" pattern="[A-Z]" ignoreCase="false" />
		<add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />
		<add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />
		<add input="{R:1}" pattern="^.*?\.(axd|css|js|jpg|jpeg|png|gif|ashx|asmx|svc).*?$" negate="true" ignoreCase="true" />
	</conditions>
	<action type="Rewrite" url="_{ToLower:{R:1}}" />
</rule>
<rule name="SEO - remove default.aspx" stopProcessing="false">
	<match url="^_*(.*?)/?default\.aspx$" />
	<action type="Rewrite" url="_{R:1}" />
</rule>
<rule name="SEO - Trim aspx" stopProcessing="false">
	<match url="^_*(.*)\.aspx$" />
	<action type="Rewrite" url="_{R:1}" />
</rule>

These are the common redirect rules. There are a few things different here than you normally see in a redirect rule. First off, it doesn't actually redirect them, it only makes a rewrite. It doesn't stop the processing either, which means it will go through all the rules and modify the URL each time.

The redirect

<rule name="Redirect - Subdomains with www to non-www" stopProcessing="true">
	<match url="^_*(.*)" />
	<conditions logicalGrouping="MatchAll" trackAllCaptures="false">
		<add input="{HTTP_HOST}" pattern="^www\.(.*)\.([^\.]+)\.([^\.]+?)$" />
	</conditions>
	<action type="Redirect" url="{MapSSL:{HTTPS}}{C:1}.{C:2}.{C:3}/{R:1}" redirectType="Permanent" />
</rule>
<rule name="Redirect - Top domains with non-www to www" stopProcessing="true">
	<match url="^_*(.*)" />
	<conditions logicalGrouping="MatchAll" trackAllCaptures="false">
		<add input="{HTTP_HOST}" pattern="^([^\.]+)\.([^\.]+?)$" />
	</conditions>
	<action type="Redirect" url="{MapSSL:{HTTPS}}www.{HTTP_HOST}/{R:1}" redirectType="Permanent" />
</rule>
<rule name="Redirect - Non-canonical redirect" stopProcessing="true">
	<match url="^_+(.*)" />
	<action type="Redirect" url="{R:1}" redirectType="Permanent" />
</rule>

On a rewrite it can only modify the URL, it cannot modify the domain name. So here it has to redirect.

The first two rules fixes any www issues. It does so by matching the domain with a regex, looking at how many punctuation marks are present in the domain name.

This will mess up co.uk domains as there is a punctuation mark more than my regex expects. It is possible to modify the rule to take fix that. This functionality though, has not been implemented yet. If you need it and need my help, write me - I'll be happy to help.

The last rule is a fallback in case the domain name is correct, but the URL was somehow modified.
 As you might have noticed it adds an underscore (_) on each of the rules when it rewrites it. It is this underscore that it tests for in this last rule.
This naturally also makes URLs with underscore impossible. But to be fair I haven't seen many pages with underscores in them, which was why I choose underscore. It could have been anything.

It does the rewrites rather than redirects to avoid redirecting more times than necessary. This should help keep some of the link juice for your google ranking.

Permanent Caching

<rewriteMaps>
	<rewriteMap name="MapSSL" defaultValue="OFF">
		<add key="ON" value="https://" />
		<add key="OFF" value="http://" />
	</rewriteMap>
</rewriteMaps>
<outboundRules>
	<rule name="RewriteCache-Control" preCondition="old url with 301">
		<match serverVariable="RESPONSE_Cache-Control" pattern="(.*)" />
		<action type="Rewrite" value="NO-CACHE" />
	</rule>
	<preConditions>
		<preCondition name="old url with 301">
			<add input="{RESPONSE_CONTENT_TYPE}" pattern="^text/html" />
			<add input="{RESPONSE_STATUS}" pattern="^301$" />
		</preCondition>
	</preConditions>
</outboundRules>

The rewrite map is used in the rules to ensure that if the request came through HTTPS, it stays in HTTPS, same with HTTP. You can see the usage in the rules above.

Now the outbound rule is something special. I haven't seen it anywhere else, but I had a heavy need for it during testing.

I'll explain why it is important.
Take a case where your webpage is being redirected from a /contact to a /support page. Not unreasonable.

The browser hits the contact page and receives a 301 permanent redirect. The browser takes this very literally. 301 is a permanent redirect and therefore it is cached. Permanently.

But as the web goes, nothing is really permanent and at some point you might want to have an actual contact page. Well you can't.

Any browser that have made a request to the contact page would never be able to hit that page.
The browser already cached the redirect so it has no "need" to make a request to the page, it goes into the cache and redirects the request immediately.

This caused me huge headaches when testing out these rules as I had to clear my entire cache each time I wanted to test any redirect. And you can't really ask your visitors to clear their cache because you wanted to make a contact page.

This outbound rule fixes that. On a 301 response status it changes the Cache-Control header and sets it to "NO-CACHE" essentially telling the browser not to cache the redirect.
You can modify this if you want it to just cache it, for example, for a week.
Now you're able to reuse your redirected pages at a later date if you want to.

Now, there is most likely still improvements to be made, so if anyone have suggestions or fixes, they are more than welcome to share and I will get the package updated.

Merry Christmas everyone!
Faceted Search with Bobo
— by Antony Briggs
Introduction

Who hasn't had a client say "build me a search function like eBay (or Amazon, Ebuyer etc.)"?

Usually the client has no idea of the scale of the request they've just made but as we'll find out, Bobo does a pretty good job of handling it all.

Why facet with Bobo?

Good question! The core Lucene project (that powers Examine) comes with built-in faceting but that's written in Java. The .net port is a little behind the times (version 3.0.3 to be precise and we don't see true Faceting until version 3.4 or so)

Examine also has its own implementation of faceting but it's in an experimental branch and so requires re-compiling Examine (and potentially keeping it up to date with future Umbraco releases)

As we'll see, Bobo is not just a Faceting engine. It basically provides everything you need to create a browse-driven web experience.

In their own words:

"Bobo Browse is an information retrieval technology that provides navigational browsing into a semi-structured dataset. Beyond the result set from queries and selections, Bobo Browse also provides the facets from this point of browsing."

Features:

	No need for cache warm-up for the system to perform: Good for low-traffic sites

	multi value sort - sort documents on fields that have multiple values per doc, .e.g tokenized fields: This is only useful if you implement your own LuceneIndexer.DocumentWriting Event Handler.

	fast field value retrieval: You can fetch the search results directly from Bobo, avoiding an Umbraco Content lookup if you need maximum speed (I don't personally do this - assuming you've implemented pagination Umbraco will barely feel a tickle)

	facet count distribution analysis: Erm? Answers on a postcard?

	stable and small memory footprint: Good.

	support for runtime faceting: See point 4.

As an aside: A discussion of faceting wouldn't be complete without touching upon Solr. Similar to Bobo, Solr imposes a structure on your data via a Schema and allows you to search sort and facet all kinds of document-orientated data. But this requires a not-insignificant investment of time to keep the Solr index in-sync with your Umbraco content - something that Examine handles for free.

Build Bobo

Now this may look like a lot of effort, but stick with me, it'll be worth it in the end.

Until Umbraco Examine is updated to use version 3.0.3 of Lucene, we need to use the old, and slightly un-loved, version of Bobo. This requires a little work but I've detailed the steps below:

	https://bobo.codeplex.com/SourceControl/latest - for Lucene 2.9

	https://github.com/zhengchun/Bobo-Browse.Net - for Lucene 3.0.3

Download a zip of the source code. Don't open the solution in visual studio yet! We need to replace the log4net.dll in \DllReferences with the one from the Umbraco distribution first. This done, open the solution in visual studio (I used vs2010, if you have a newer version it will likely want to update the project) then right-click properties on each of the three projects in the solution in turn (BoboBrowse.Net, BoboBrowse.Tests & LuceneExt.Net) and change:

	The Target Framework to (at least) version 4 (not client profile)

	Uncheck the "Sign the assembly" check box on the "Signing" tab - The version of log4net that ships with Umbraco isn't signed so in turn, Bobo can't be signed.

Finally, build the solution and you will have a shiny BoboBrowse.Net.dll (& friends) in the \Deployment folder.

Copy the contents of this folder to the \bin folder of Umbraco and reload the admin area.

The Demo

I've put together a little demo based on the TXT starter Kit for Umbraco (this demo was written for u7.1.9 but the version of Lucene shipped with Umbraco has been stable for ages so the core concepts will work on any version of Umbraco 4.7+)

Let's start with adding some content that we can facet on. I've added a property to the News Item Document Type called Category:

[image: Add Property]

And then populated each news article with some sample categories:

[image: Populate Property]

What we're aiming for is a search page with a keyword search plus our Category facet a little like this:

[image: Noquery]

I sincerely hope yours will be prettier!

The Code

Most of the following is just a re-spun version of the usage sample from the projects' home page at https://bobo.codeplex.com/ with a sprinkling of configuration from my last project.

Let's start by building a BrowseRequest.

// creating a browse request
var browseRequest = new BrowseRequest
{
 Count = 10, // Page size
 Offset = 0, // Page size * Page Number
 FetchStoredFields = true, // Fetch data from stored fields
 Sort = new[] { new SortField("updateDate", 3, true) }
};

As you can see, Bobo handles all the logic efficiently paging through your result set, all you need to do it specify a page size and build a pagination UI (Not covered in this demo)

Next, we'll add in the keyword search provided by the user. This will be interpreted as a raw Lucene Query so you may want to sanitise the user's input a little. Here's one I created earlier.

// parse a query
var query = Request["q"];
if(!string.IsNullOrEmpty(query)) {
 var parser = new Lucene.Net.QueryParsers.QueryParser(Lucene.Net.Util.Version.LUCENE_29, "bodyText", new Lucene.Net.Analysis.KeywordAnalyzer());
 Query q = parser.Parse(query);
 browseRequest.Query = q;
}

Here's where I deviate from the Bobo sample usage - Each facet requires two entities in Bobo, a FacetHandler and a FacetSpec. I chose to initialise them both at the same time as follows:

ICollection<FacetHandler> handlerList = new List<FacetHandler>();

// define the facet output spec used for all facets
var facetSpec = new FacetSpec { OrderBy = FacetSpec.FacetSortSpec.OrderHitsDesc, ExpandSelection = true };

// Add a facet
var fieldName = "category";
handlerList.Add(new SimpleFacetHandler(fieldName));
browseRequest.SetFacetSpec(fieldName, facetSpec);

The chosen FacetHandler specifies the general behaviour of the Facet. For example you can use a RangeFacetHandler() to facet on pre-defined ranges e.g. price ranges or date ranges. Here we're using the SimpleFacetHandler which expects a single value per document (a category in this example). If you were able to select multiple categories then you would need to upgrade to the MultiValueFacetHandler.

Now we stick it all together by:

	Grabbing an Examine Searcher for the built-in 'External' index.

	Then grabbing the underlying Lucene IndexSearcher.

	Extracting the IndexReader which is what Bobo will operate on.

	Wrapping the vanilla IndexReader with a BoboIndexReader.

	Executing the browse request we've built up.

var searchProvider = ExamineManager.Instance.SearchProviderCollection["ExternalSearcher"] as LuceneSearcher;
var searcher = (IndexSearcher) searchProvider.GetSearcher();
var reader = searcher.GetIndexReader();

// decorate lucene reader with a bobo index reader
BoboIndexReader boboReader = BoboIndexReader.GetInstance(reader, handlerList);

// perform browse
IBrowsable browser = new BoboBrowser(boboReader);
var results = browser.Browse(browseRequest);

This will result in a list of Lucene documents that matches your query.

As lucene documents consist of Key-Value pairs of string data, they're not the nicest things to work with, especially when we have the awesome Umbraco at our fingertips. So the following step will extract the NodeIds of the matching documents (only for the current page if there are a lot of matches) and fetch lovely Umbraco Dynamic content items for us to razor all over!

// create collection of Umbraco NodeIds from Hits.
var resultNodeIds = results.Hits.Select(x => x.StoredFields.Get("id")).ToList();

HTML

I suspect most people reading this will have a fair idea of how they want their search results to look so I'll keep this brief.

<form method="post">
 <div class="row">
 <div class="9u">
 <label for="q">Search</label>
 <input name="q" id="q" value="@Request["q"]" />
 <input type="submit" value="Search" />
 </div>
 </div>

 <div class="row">
 <div class="3u">
 @foreach (var facet in results.FacetMap)
 {
 <h4>@facet.Key</h4>

 @foreach (var facetValue in facet.Value.GetFacets())
 {
 var chck = (Request["facet_" + facet.Key] ?? string.Empty).Contains(@facetValue.Value.ToString()) ? "selected" : null;
 <label><input type="checkbox" name="facet_@facet.Key" value="@facetValue.Value" checked="@chck" />@facetValue.Value</label>: @facetValue.HitCount
 }

 }
 <input type="submit" value="Update" />
 </div>
 <div class="6u">

 @foreach (var resultNodeId in resultNodeIds)
 {
 var node = Umbraco.Content(resultNodeId);
 @node.Name
 }

 </div>
 </div>
</form>

In this snippet, I've:

	Iterated over the available facets, generating a checkbox for each and then,

	Iterated over the search results, outputting a link to the page.

It isn't pretty, it's not even clever. OK, there's no need to laugh!

 [image: Searching the demo for keyword 'Lorem']

 Searching the demo for keyword 'Lorem'

Filtering

Now that we have checkboxes to let the user filter by the available facets, we need to pass their selections on to Bobo.

// read facet selections from the form post
foreach(string key in Request.Form) {
 if(!key.StartsWith("facet_")) {
 continue;
 }
 var facet = key.Substring(6);
 // add a selection
 BrowseSelection sel = new BrowseSelection(facet);
 sel.AddValue(Request.Form[key]);
 browseRequest.AddSelection(sel);
}

Here we're simply:

	Iterating over the Form collection

	Picking out the facet selections and

	Dumping them straight into the BrowseRequest.

It really couldn't be simpler!

 [image: Filtering the news articles by category. As if you needed proof!]

 Filtering the news articles by category. As if you needed proof!

You can find the complete demo macro partial here.

Wrapping Up

Whilst this has been a whistle stop tour of bobo, we have built up a fully-functional search page with faceting. However, there are some subtleties that we haven't touched upon, such as how the Analyser used to build the Index has a big impact on the behaviour of the faceting (e.g. the External index uses a StandardAnalyser by default and that is the reason that the facets appear in lowercase in the screenshots above).

Hopefully I've whetted your appetite enough to want to continue reading about Bobo and/or Lucene, the technology that underpins Examine. Enjoy!

	https://code.google.com/p/bobo-browse/

	https://bobo.codeplex.com/

	https://github.com/zhengchun/Bobo-Browse.Net

	https://gist.github.com/abriggs-eduserv/c23f4a0ffc28b5afebd5

The Merchello Contribution
— by Rusty Swayne
For the last year and a half, I have been involved in building an open sourced eCommerce package for Umbraco: Merchello. In the spirit of the holidays, I'd like to talk about what the project has given back to me; specifically, the rewarding aspects running a project such as Merchello and how enriching it has been to see people from all over the world sharing and collaborating to build and support software for everyone.

Getting Started

Coming up with the justification to Merchello was difficult because there were other existing eCommerce options for Umbraco. We also knew that building a full featured eCommerce solution is a very ambitious task in any framework.

Prior to our team starting on the project, there had been many conversations in the Umbraco community about how it somehow did not "feel" right vesting a ton of time building expensive custom extensions for existing proprietary packages.

A void already existed - it just needed a team to take on the project.

Getting Funding

One of the biggest misnomers about OSS projects, is that they are free. Nothing is further from the truth. In fact they are extremely expensive in terms of time and resources, especially if you consider the amount of time that is required for support, both in terms of software patches and answering questions from people using it in their implementations.

Not every package needs to be monetarily funded. It really comes down to the amount of effort and resources required to get things up and running.

Funding can be as simple as getting your company to agree to allow you to work on a project while you're at work. It can come from small community donations. It can also come from corporate sponsorships or private investments. You have to be organized, have a meaningful plan and not be afraid to solicit the support.

The good news is, there are thankfully people in the world that do have the vision to see the value in supporting open sourced software.

From the beginning, we knew that Merchello was not going going to be a project that could be completed in our spare time; we needed to somehow find a means to fund the project.

We were extremely lucky to reach an agreement with the CEO of Bramble Berry, Inc and new owner of Mindfly, Inc., Anne-Marie Faiola. Her sponsorship not only initially funded but continues to support a full time team completely devoted to the Merchello project.

The First Release

After so many hours of effort, opening up the package for the community to scrutinize can be nerve wracking. There's a great quote about this pointed out to me by Paul Sterling (Umbraco HQ).

If you are not embarrassed by the first version of your product, you've launched too late.

~ Reid Hoffman, the founder of LinkedIn

Our team did not announce that we had started the project until we published our first release just before uWestFest 2014. After the announcement, the interest and support in the Umbraco community made the project come alive.

Community Adoption and Feedback

Things really get exciting when you start receiving feedback from the community. Yes, even bug reports. It shows that people are working with it and are willing to work with you to make the project better. When you get your first bug report or forum question, you should stop and celebrate; you've just received your first contribution.

Going the extra mile (or kilometer) to make sure people can use the software is super important. In many ways, the early adopters become the immediate priority for the project after your release. They have stepped up to take the risk to use the software.

Make sure you do everything you reasonably can to enable them to be successful in their implementation. This also provides the community with growing confidence in the package and encourages others to try it out.

Merchello started with a few forum posts and tasks, primarily entered by our team in an effort to start the conversation. Over the last six months, both the issue tracker and forum on our.umbraco.org have taken off and we are collecting lots of daily feedback.

Writing open packages for Umbraco has the added benefit of the established, relatively seasoned community that is motivated to try things out, not be overly critical and are interested in working together to make things better for everyone. This is what the 'community' in 'Umbraco community' is all about.

Pull Requests

Eventually, you will wind up getting your first community pull request. That is an incredible feeling. Not only has someone played with your package enough to figure out something to correct, but have spent their time making a change that they want to give back so that others can get the benefit of their work.

For Merchello, I remember it was people starting to update our language files for the Merchello back office. At the moment, our team is comprised of only English speakers, so actually being able to see the Merchello section in Italian, Spanish and Danish was an awesome day.

Let's Take it To the Next Level Together

The challenge of building Merchello has been exhilarating. But as much as I hope it gives back to the community, it has been immensely rewarding for me to architect a big project, to see Merchello sites in the wild and give back to the community that has given so much to me.

Remember no contribution is too small and every bit of help we can get is truly appreciated (and we love pull requests). I can't wait to see where the upcoming years take the Merchello project!
The power of (Christmas) card modes
— by Liv Madsen
- or how to take the load off your templates with smarter CSS.

I get the distinct honour of closing this year's calendar, so following tradition I'll share a little something with you that lifts my spirits these days. It's an approach that my team and I have been using lately to meet a high need for flexibility in layouts from designers and editors alike - while keeping the backend clean and not sacrificing visual testing and documentation.

It's not strictly tied to Umbraco, but rather something that impacts how we structure and communicate about the frontend.

This post is not highly technical, so if you're just mildly interested in CSS and know the basics of pre-processors, I hope you will find this useful too.

What's the matter?

I guess I can best open this with an example.

Say we need to display some different content bits, or cards, in a content panel that appears across a site. The editors can choose a varying number of cards to be displayed in the panel. The chosen cards can represent different content types, for instance an editorial article, a product, an image gallery or an event, so each type needs to be presented with a set of information that fits the content type.

On our side, we want to make sure that the layout of the panel adapts in a controlled way to the varying number of cards, so we can keep a visual hierarchy between the chosen cards, no matter if there are three or 20.

Consider the following fairly simple setup with seven card slots.

 [image:]

On small screens we want to stack the cards. We want the first card to have a lot of visual weight, but for all the following we want to save space. When there is more screen space, we can increase the visual weight of the cards a bit.

When there are only three cards, we can afford a little more space, but we want to still keep some hierarchy. The slots in the panel could then line up something like this:

 [image:]

So far, so good. But notice how some of the cards would have to take on a slightly different layout across the breakpoints.

And now remember that each of these positions can be taken up by completely different content types, each with their specific styling needs. A product card needs a price, an event needs to show date, time and location, an article card might need a publication date, etc.

As the card types and the card slot counts grow, applying the styling for each type directly on the panel element can quickly become a testing and maintenance nightmare.
Just to run perceptual difference tests, we would have to not only set up the different layouts based on amount of cards, but also examples of each content type in each slot across the different panel layouts.

Ugh. Not exactly a dream task.

So what we need is a way to show all the different presentation modes of each content type in an isolated manor for our tests. And then to apply those presentation modes to the cards based on where they sit in any given panel layout - without tightly coupling the styling to that panel (so we can reuse the cards in panels with different layouts).

We would also prefer to keep the markup for each card type the same no matter the placement and panel. That simplifies the template setup - and by keeping all knowledge of the panel layout and each card presentation entirely in CSS we are free to switch betweens the modes depending on the flow of the panel layout across breakpoints.

Who you gonna call? Card modes

For overview, these are terms I'm using:

panels - are full width containers for a set of cards.

card slots - are the direct container of individual cards in e.g. a panel. This is where we know the properties of the presentation, so card slots provide the needed layout context for assigning presentation modes to the card types we can expect to see in the card slot.

cards - are the individual self-contained chunks of content to be displayed. The raw card has only the most basic styling and has no knowledge of presentational context.

card types - are variations of cards with the specific markup needed to best represent a content type (product teaser card, article teaser card, event card, etc.). If you can describe a unique set of properties or content to be displayed, it's a card type.

card modes - are additional stylings of the card types to meet whatever restrictions apply to a specific slot in a panel, e.g. "has to be fixed ratio, 3x2", "is suited for big areas", "is suited for small areas". Each card type is styled in multiple modes as needed. The modes are kept entirely in SCSS (or what else you prefer) as mixins, with a uniform naming structure like MODE_product-card-A, MODE_product-card-B, MODE_article-card-A etc. To ensure that the card mode styles are consistent and testable, we keep the card modes mostly breakpoint agnostic and let the panels handle any adjustments to the surrounding layout.

Sometimes we may also need to vary the colours of a card in order to match a specific type of panel. We do that by splitting out the colours, in the same manner as the layout, in

card themes - a presentational set holding all colour styling. THEME_card-type-red, THEME_card-type-black, THEME_card-type-yellow which can then also be applied to panels or card slots.

But let's stick to the layout today.

Mmm... grouping things

We start by identifying the needed modes. To keep it simple, in our little example from earlier, they can be grouped like so:

 [image:]

Mode A has the most weight and the most room. In this mode we can show all the information available on a given card type. We give Mode A a fixed aspect ratio to make it easy to combine cards across different grid configurations.

Mode B is also fixed ratio, but has less weight and typically less room, so we want to display a little less information on cards in this mode.

Mode C shows the least possible information needed to communicate the meaning of a card. For grid flexibility in this example we also keep C at fixed ratio.

Great, now we have a little more to go by.

Quick! To the style guide!

In fact, we have enough information to set up these modes in our style guide for card types in question.

We will expect to see card types Product and Article in this panel, so we set up the three modes for those two cards types, arranging the needed styling in uniformly named MODE mixins like so:

@mixin MODE_article-card—A {
 // all the A MODE styling for the ARTICLE card type goes here
 .article-card {
 ...
 }
 .article-card__publiction-date {
 ...
 }
 ...
}

.card-slot—A {
 // allow direct application by a card-slot modifier - used in the style guide
 @include MODE_article-card—A;
}

@mixin MODE_product-card—A {
 // all the A MODE styling for PRODUCT card type goes here
 .product-card {
 ...
 }
 .product-card__price {
 ...
 }
 ...
}

.card-slot—A {
 // allow direct application by a card-slot modifier - used in the style guide
 @include MODE_product-card—A;
}

I also like to include a raw version of each card type in my style guide to make it clear what markup and content is available.

And since the markup is the same for all cards of the same type, I can simply include the same partial in my style guide as needed.

 [image:]

becomes:

 [image:]

Awesome!

This is totally something that we can run our visual tests on. We also have a place to point team members to, when they need to know what presentation styles we have in place for the different card types, which makes it way easy to evaluate when a new mode or a new card type is needed.

As an added bonus, we now have a language for the layout. We can talk about card type X in mode Y. Simple names, but they're very useful in our team communication.

Tip: Any style guide framework will do just fine. These examples are set up in TDCSS.js - if you're not already working with style guides, check that out for a dead simple starting point at http://jakobloekke.github.io/tdcss.js/.

Into the panel

With this in place, we can go ahead and apply the modes to panels in different configurations. To keep it all in the CSS, we can turn to structural pseudo-classes to apply the modes depending on our current card count. These days support is pretty solid (http://caniuse.com/#search=nth), however IE8 is left out (on the mqs as well, of course), so you will need to apply some fallback for that.

Tip: If you're not familiar with this set of selectors, swing by http://css-tricks.com/how-nth-child-works/ - don't be scared by the notice of browser support, the article is a few years old. Also, try this great tool from Lea Verou to get a better feel for them: http://lea.verou.me/demos/nth.html

Our smallest break point is fairly simple:

@include mq(small) {

 // ---------------------
 // card slot layout / card mode assignments

 // first card slot always
 .panel__card-slot:first-child {
 @include MODE_article-card--A;
 @include MODE_product-card--A;
 }

 // second card slot when it is also among the three last
 // i.e. when there are up to four card slots in panel
 .panel__card-slot:nth-child(2):nth-last-child(-n+3) {
 @include MODE_article-card--B;
 @include MODE_product-card--B;
 }

 // the second card slot when there are more than four cards in panel
 // and all following slots always
 .panel__card-slot:nth-child(2):not(:nth-last-child(-n+3)),
 .panel__card-slot:nth-child(n+3) {
 @include MODE_article-card--C;
 @include MODE_product-card--C;
 }

}

Note: structural pseudo-classes are fun, but honestly they are not the most easily scannable thing in the universe, so as they get more complex your colleagues might appreciate a comment with your intentions, especially if they are subject to change.

Also, I would advise you to group the mode applications when possible and sensible, since you are effectively repeating all the rules for the modes in each context where you apply it. No more than had you applied the styles directly, of course, but it might be easier to lose track of when it's this simple to do. If a lot of panels are using the same modes, you might even want to consider injecting some placeholders to group further. YMMV.

In this manner work your way through the breakpoints.

@include mq(medium) {

 // styles applying to all card slots on this breakpoint
 .panel__card-slot {
 float: left;
 ...
 }

 // first card always
 .panel__card-slot:first-child {
 width: 100%;
 @include MODE_article-card--A;
 @include MODE_product-card--A;
 }

 // following four card slots
 .panel__card-slot + .panel__card-slot:nth-child(-n+5) {
 width: 50%;
 @include MODE_article-card--B;
 @include MODE_product-card--B;
 }

 // All card slots above 5
 // and last slot always when count is even
 .panel__card-slot:nth-child(n+6),
 .panel__card-slot:last-child:nth-child(even) {
 width: 50%;
 @include MODE_article-card--C;
 @include MODE_product-card--C;
 }

 // when the last card slot is even, take up whole row
 .panel__card-slot:last-child:nth-child(even) {
 width: 100%;
 }
}

And so our example from earlier takes shape:

 [image:]

You can now go through the panel layouts for even more card slots and subsequently add more card types as/if needed. The groundwork you did by adding the card modes directly to the style guide helps you to ensure that they are all in the right shape, so you can focus on the flow of the card slots at this point.

And there you have it.

Biggest benefit from this approach for me, the frontender, is that each mode remains visible, and therefore testable, without setting up a working example of each panel/card configuration.

Biggest benefit for my backender is that all the presentational handling is left to CSS, so the markup doesn't have to duplicate any complex information about grid, breakpoints or card presentation across them.

For my designing colleagues this provides a great overview and a concrete framework with set restraints to work from.

And to the whole team it gives a system and a language to ease the communication about the structure and the styling as the site grows and changes.

I hope you can find some of this as useful as I have. And if you have an interesting approach that has helped you tackle this is a different way, do share. In the spirit of Christmas and all.

Happy holidays!

tl;dr: An approach to set up repeated content chunk styling in a testable, flexible, maintainable way. Setup and selectors can get slightly complex and approach only gives full yield IE9+, but hooray for style guides, and team communication benefits.
Merry Christmas.

